Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
Solar Storms Could Sandblast the Moon
by Bill Steigerwald for Goddard Space Flight Center,
Greenbelt, MD (SPX) Dec 09, 2011


Coronal Mass Ejection as viewed by the Solar Dynamics Observatory on June 7, 2011. Credit: NASA/SDO.

Solar storms and associated Coronal Mass Ejections (CMEs) can significantly erode the lunar surface according to a new set of computer simulations by NASA scientists. In addition to removing a surprisingly large amount of material from the lunar surface, this could be a major method of atmospheric loss for planets like Mars that are unprotected by a global magnetic field.

The research is being led by Rosemary Killen at NASA's Goddard Space Flight Center, Greenbelt, Md., as part of the Dynamic Response of the Environment At the Moon (DREAM) team within the NASA Lunar Science Institute.

CMEs are basically an intense gust of the normal solar wind, a diffuse stream of electrically conductive gas called plasma that's blown outward from the surface of the Sun into space. A strong CME may contain around a billion tons of plasma moving at up to a million miles per hour in a cloud many times the size of Earth.

The moon has just the barest wisp of an atmosphere, technically called an exosphere because it is so tenuous, which leaves it vulnerable to CME effects. The plasma from CMEs impacts the lunar surface, and atoms from the surface are ejected in a process called "sputtering."

"We found that when this massive cloud of plasma strikes the moon, it acts like a sandblaster and easily removes volatile material from the surface," said William Farrell, DREAM team lead at NASA Goddard.

"The model predicts 100 to 200 tons of lunar material - the equivalent of 10 dump truck loads - could be stripped off the lunar surface during the typical 2-day passage of a CME."

This is the first time researchers have attempted to predict the effects of a CME on the moon. "Connecting various models together to mimic conditions during solar storms is a major goal of the DREAM project," says Farrell.

Plasma is created when energetic events, like intense heat or radiation, remove electrons from the atoms in a gas, turning the atoms into electrically charged particles called ions. The Sun is so hot that the gas is emitted in the form of free ions and electrons called the solar wind plasma. Ejection of atoms from a surface or an atmosphere by plasma ions is called sputtering.

"Sputtering is among the top five processes that create the moon's exosphere under normal solar conditions, but our model predicts that during a CME, it becomes the dominant method by far, with up to 50 times the yield of the other methods," says Killen, lead author of a paper on this research appearing in a special issue of the Journal of Geophysical Research Planets.

CMEs are effective at removing lunar material not only because they are denser and faster than the normal solar wind, but also because they are enriched in highly charged, heavy ions, according to the team.

The typical solar wind is dominated by lightweight hydrogen ions (protons). However, a heavier helium ion with more electrons removed, and hence a greater electric charge, can sputter tens of times more atoms from the lunar surface than a hydrogen ion.

The team used data from satellite observations that revealed this enrichment as input to their model. For example, helium ions comprise about four percent of the normal solar wind, but observations reveal that during a CME, they can increase to over 20 percent.

When this enrichment is combined with the increased density and velocity of a CME, the highly charged, heavy ions in CMEs can sputter 50 times more material than protons in the normal solar wind.

"The computer models isolate the contributions from sputtering and other processes," says Dana Hurley, a co-author on the paper at the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.

"Comparing model predictions through a range of solar wind conditions allows us to predict the conditions when sputtering should dominate over the other processes. Those predictions can later be compared to data during a solar storm."

The researchers believe that NASA's Lunar Atmosphere And Dust Environment Explorer (LADEE) - a lunar orbiter mission scheduled to launch in 2013 - will be able to test their predictions.

The strong sputtering effect should kick lunar surface atoms to LADEE's orbital altitude, around 20 to 50 kilometers (about 12.4 to 31 miles), so the spacecraft will see them increase in abundance.

"This huge CME sputtering effect will make LADEE almost like a surface mineralogy explorer, not because LADEE is on the surface, but because during solar storms surface atoms are blasted up to LADEE," said Farrell.

The moon is not the only heavenly body affected by the dense CME driver gas. Space scientists have long been aware that these solar storms dramatically affect the Earth's magnetic field and are responsible for intense aurora (Northern and Southern Lights).

While certain areas of the Martian surface are magnetized, Mars does not have a magnetic field that surrounds the entire planet. Therefore, CME gases have a direct path to sputter and erode that planet's upper atmosphere.

In late 2013, NASA will launch the Mars Atmosphere and Volatile Evolution (MAVEN) mission that will orbit the Red Planet to investigate exactly how solar activity, including CMEs, removes the atmosphere.

On exposed small bodies like asteroids, the dense, fast-streaming CME gas should create a sputtered-enhanced exosphere about the object, similar to that expected at the Moon.

Papers on different aspects of the CME impact simulation are being written and will appear in the special issue of the Journal of Geophysical Research Planets. The team's research will also be presented December 5 during the fall meeting of the American Geophysical Union in San Francisco.

.


Related Links
DREAM
NLSI
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Cluster reveals Earth bow shock is remarkably thin
Paris, France (ESA) Nov 28, 2011
A new study based on data from ESA's Cluster mission has revealed that the bow shock formed by the solar wind as it encounters Earth's magnetic field is remarkably thin: it measures only 17 kilometres across. Thin astrophysical shocks such as this are candidate sites for early phases of particle acceleration. The finding thus sheds new light on the much debated issue of particle injection ... read more


SOLAR SCIENCE
Hundreds of NASA's moon rocks missing: audit

Schafer Corp Signs Licensing Agreement with MoonDust Technologies

Russia wants to focus on Moon if Mars mission fails

Flying over the three-dimensional Moon

SOLAR SCIENCE
Russia may join European Mars mission

Failed Mars probe to fall to Earth

New Tool for Touring Mars Using Detailed Images

Mars Opportunity Rover Finds Rich Vein Of Gypsum Water Deposits

SOLAR SCIENCE
Ball Aerospace Delivers Orion Phased Array Antenna EDUs

Voyager Hits New Region at Solar System Edge

Ugandan works on space project from mother's backyard

Nanosail-D Sails Home

SOLAR SCIENCE
China honors its 'father' of space efforts

Philatelic Cover Reveals the secret names of second Taikonaut team

First Crew for Tiangong

China post office offers letters from space

SOLAR SCIENCE
Astronaut TJ Creamer Learns Space Station Science From the Ground Up

FLEX-ible Insight Into Flame Behavior

Growing Knowledge in Space

MDA to extend its services to support Canadarm2 and Dextre for ISS

SOLAR SCIENCE
SpaceX mission to space station set for February

Boeing Receives USAF Reusable Booster System Contract

Soyuz' second mission from French Guiana is readied at the Spaceport

On the record with Arianespace

SOLAR SCIENCE
Giant Super-Earths Made Of Diamond Are Possible

New Planet Kepler-21b discovery a partnership of both space and ground-based observations

Astronomers Find Goldilocks Planet and Others

The Habitable Exoplanets Catalog, a new online database of habitable worlds

SOLAR SCIENCE
Researchers find best routes to self-assembling 3D shapes

Avatars develop real world skills

Tablets, e=readers closing book on ink-and-paper era

New insights into how the brain reconstructs the third dimension




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement