![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Oct 27, 2017
A small, recently discovered asteroid - or perhaps a comet - appears to have originated from outside the solar system, coming from somewhere else in our galaxy. If so, it would be the first "interstellar object" to be observed and confirmed by astronomers. This unusual object - for now designated A/2017 U1 - is less than a quarter-mile (400 meters) in diameter and is moving remarkably fast. Astronomers are urgently working to point telescopes around the world and in space at this notable object. Once these data are obtained and analyzed, astronomers may know more about the origin and possibly composition of the object. A/2017 U1 was discovered Oct. 19 by the University of Hawaii's Pan-STARRS 1 telescope on Haleakala, Hawaii, during the course of its nightly search for near-Earth objects for NASA. Rob Weryk, a postdoctoral researcher at the University of Hawaii Institute for Astronomy (IfA), was first to identify the moving object and submit it to the Minor Planet Center. Weryk subsequently searched the Pan-STARRS image archive and found it also was in images taken the previous night, but was not initially identified by the moving object processing. Weryk immediately realized this was an unusual object. "Its motion could not be explained using either a normal solar system asteroid or comet orbit," he said. Weryk contacted IfA graduate Marco Micheli, who had the same realization using his own follow-up images taken at the European Space Agency's telescope on Tenerife in the Canary Islands. But with the combined data, everything made sense. Said Weryk, "This object came from outside our solar system." "This is the most extreme orbit I have ever seen," said Davide Farnocchia, a scientist at NASA's Center for Near-Earth Object Studies (CNEOS) at the agency's Jet Propulsion Laboratory in Pasadena, California. "It is going extremely fast and on such a trajectory that we can say with confidence that this object is on its way out of the solar system and not coming back." The CNEOS team plotted the object's current trajectory and even looked into its future. A/2017 U1 came from the direction of the constellation Lyra, cruising through interstellar space at a brisk clip of 15.8 miles (25.5 kilometers) per second. The object approached our solar system from almost directly "above" the ecliptic, the approximate plane in space where the planets and most asteroids orbit the Sun, so it did not have any close encounters with the eight major planets during its plunge toward the Sun. On Sept. 2, the small body crossed under the ecliptic plane just inside of Mercury's orbit and then made its closest approach to the Sun on Sept. 9. Pulled by the Sun's gravity, the object made a hairpin turn under our solar system, passing under Earth's orbit on Oct. 14 at a distance of about 15 million miles (24 million kilometers) - about 60 times the distance to the Moon. It has now shot back up above the plane of the planets and, travelling at 27 miles per second (44 kilometers per second) with respect to the Sun, the object is speeding toward the constellation Pegasus. "We have long suspected that these objects should exist, because during the process of planet formation a lot of material should be ejected from planetary systems. What's most surprising is that we've never seen interstellar objects pass through before," said Karen Meech, an astronomer at the IfA specializing in small bodies and their connection to solar system formation. The small body has been assigned the temporary designation A/2017 U1 by the Minor Planet Center (MPC) in Cambridge, Massachusetts, where all observations on small bodies in our solar system - and now those just passing through - are collected. Said MPC Director Matt Holman, "This kind of discovery demonstrates the great scientific value of continual wide-field surveys of the sky, coupled with intensive follow-up observations, to find things we wouldn't otherwise know are there." Since this is the first object of its type ever discovered, rules for naming this type of object will need to be established by the International Astronomical Union. "We have been waiting for this day for decades," said CNEOS Manager Paul Chodas. "It's long been theorized that such objects exist - asteroids or comets moving around between the stars and occasionally passing through our solar system - but this is the first such detection. So far, everything indicates this is likely an interstellar object, but more data would help to confirm it."
![]() Flagstaff, AZ (SPX) Oct 19, 2017 Astronomers at Lowell Observatory observed comet 41P/Tuttle-Giacobini- Kresak last spring and noticed that the speed of its rotation was quickly slowing down. A research team led by David Schleicher studied the comet while it was closer to the Earth than it has ever been since its discovery. The comet rotational period became twice as long, going from 24 to more than 48 hours within six weeks, a ... read more Related Links NASA's Planetary Data System Small Bodies Node at the University of Maryland Asteroid and Comet Mission News, Science and Technology
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |