Subscribe free to our newsletters via your
. 24/7 Space News .




SHAKE AND BLOW
Slow earthquakes may foretell larger events
by Staff Writers
University Park PA (SPX) Aug 20, 2013


Scanning electron microscope images showing localized shear surfaces in cross-section and oblique view. Sense of shear is top to the right. Note striations on shear surface. Similar patterns appear with serpentine. Credit: Haines, S. H.; Kaproth, B.; Marone, C.; Saffer, D. and B. A. van der Pluijm.

Monitoring slow earthquakes may provide a basis for reliable prediction in areas where slow quakes trigger normal earthquakes, according to Penn State geoscientists.

"We currently don't have any way to remotely monitor when land faults are about to move," said Chris Marone, professor of geophysics.

"This has the potential to change the game for earthquake monitoring and prediction, because if it is right and you can make the right predictions, it could be big."

Marone and Bryan Kaproth-Gerecht, recent Ph.D. graduate, looked at the mechanisms behind slow earthquakes and found that 60 seconds before slow stick slip began in their laboratory samples, a precursor signal appeared.

Normal stick slip earthquakes typically move at a rate of three to 33 feet per second, but slow earthquakes, while they still stick and slip for movement, move at rates of about 0.004 inches per second taking months or more to rupture. However, slow earthquakes often occur near traditional earthquake zones and may precipitate potentially devastating earthquakes.

"Understanding the physics of slow earthquakes and identifying possible precursory changes in fault zone properties are increasingly important goals," the researchers report on line in the August 15 issue of Science Express.

Using serpentine, a common mineral often found in slow earthquake areas, Marone and Kaproth-Gerecht performed laboratory experiments applying shear stress to rock samples so that the samples exhibited slow stick slip movement.

The researchers repeated experiments 50 or more times and found that, at least in the laboratory, slow fault zones undergo a transition from a state that supports slow velocity below about 0.0004 inches per second to one that essentially stops movement above that speed.

"We recognize that this is complicated and that velocity depends on the friction," said Marone. "We don't know for sure what is happening, but, from our lab experiments, we know that this phenomenon is occurring."

The researchers think that what makes this unusual pattern of movement is that friction contact strength goes down as velocity goes up, but only for a small velocity range.

Once the speed increases enough, the friction contact area becomes saturated. It can't get any smaller and other physical properties take over, such as thermal effects. This mechanism limits the speed of slow earthquakes. Marone and Kaproth-Gerecht also looked at the primary elastic waves and the secondary shear waves produced by their experiments.

"Here we see elastic waves moving and we know what's going on with P and S waves and the acoustic speed," said Marone. "This is important because this is what you can see in the field, what seismographs record."

Marone notes that there are not currently sufficient measuring devices adjacent to known fault lines to make any type of prediction from the precursor signature of the movement of the elastic waves. It is, however, conceivable that with the proper instrumentation, a better picture of what happens before a fault moves in slip stick motion is possible and perhaps could lead to some type of prediction.

.


Related Links
Penn State
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SHAKE AND BLOW
Powerful quake jolts major New Zealand cities
Wellington (AFP) Aug 16, 2013
A powerful earthquake rattled major cities across New Zealand on Friday, sending terrified office workers fleeing as central Wellington shook "like jelly", but authorities reported no major damage. The 6.5-magnitude quake struck at 2:31 pm (0231 GMT) near an area where a series of quakes hit last month, the US Geological Survey said. It was felt from Christchurch in the South Island to Auckl ... read more


SHAKE AND BLOW
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

SHAKE AND BLOW
Snapping Pictures of the Martian Moons

Mars Rover Opportunity Working at Edge of 'Solander'

MRO Swapping Motion-Sensing Units

Opportunity Reaches Base of 'Solander Point'

SHAKE AND BLOW
Test at Naval Station Proves Recovery Operations for Orion

Voyager 1 Has Left the Solar System

NASA Voyager Statement about Competing Models to Explain Recent Spacecraft Data

NASA Commercial Crew Partner SpaceX Completes Orbit and Entry Review

SHAKE AND BLOW
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

SHAKE AND BLOW
ISS Boosting Biological Research in Orbit

Japanese Cargo Craft Captured, Berthed to ISS

Japanese Cargo Spacecraft Docks with ISS

NASA's Firestation on way to ISS

SHAKE AND BLOW
Lockheed Martin Selects CubeSat Integrators for Athena to Enhance Launch Systems Integration

Russia to resume Proton-M rocket launches in mid-September

Roscosmos denies plans to launch Proton rocket from Baikonur on Sept 15

SpaceX rocket launches, steers and lands in test

SHAKE AND BLOW
Distant planet sets speed record by orbiting its star every 8.5 hours

Kepler planet hunter spacecraft is beyond repair: NASA

Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

New Explorer Mission Chooses the 'Just-Right' Orbit

SHAKE AND BLOW
Will 'space junk' problem intensify?

Space station astronauts to be provided with 3-D printer to make parts

Advancing resistive memory to improve portable electronics

ORNL superconducting wire yields unprecedented performance




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement