Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Shining a Light on Cool Pools of Gas in the Galaxy
by Staff Writers
Pasadena CA (JPL) Jun 13, 2013


This illustration shows a newfound reservoir of stellar fuel discovered by the Herschel space observatory (red). Image credit: ESA/NASA/JPL-Caltech.

Newly formed stars shine brightly, practically crying out, "Hey, look at me!" But not everything in our Milky Way galaxy is easy to see. The bulk of material between the stars in the galaxy -- the cool hydrogen gas from which stars spring -- is nearly impossible to find.

A new study from the Hershel Space Observatory, a European Space Agency mission with important NASA participation, is shining a light on these hidden pools of gas, revealing their whereabouts and quantities. In the same way that dyes are used to visualize swirling motions of transparent fluids, the Herschel team has used a new tracer to map the invisible hydrogen gas.

The discovery reveals that the reservoir of raw material for making stars had been underestimated before -- almost by one third -- and extends farther out from our galaxy's center than known before.

"There is an enormous additional reservoir of material available to form new stars that we couldn't identify before," said Jorge Pineda of NASA's Jet Propulsion Laboratory, Pasadena, Calif., lead author of a new paper on the findings published in the journal Astronomy and Astrophysics.

"We had to go to space to solve this mystery because our atmosphere absorbs the specific radiation we wanted to detect," said William Langer of JPL, principal investigator of the Herschel project to map the gas. "We also needed to see far-infrared light to pinpoint the location of the gas. For both these reasons, Herschel was the only telescope for the job."

Stars are created from clouds of gas, made of hydrogen molecules. The first step in making a star is to squeeze gas together enough that atoms fuse into molecules. The gas starts out sparse but, through the pull of gravity and sometimes other constricting forces, it collects and becomes denser. When the hydrogen gets dense enough, nuclear fusion takes place and a star is born, shining with starlight.

Astronomers studying stars want to follow this journey, from a star's humble beginnings as a cloud of molecules to a full-blown blazing orb. To do so requires mapping the distribution of the stellar hydrogen fuel across the galaxy. Unfortunately, most hydrogen molecules in space are too cold to give off any visible light. They lurk unseen by most telescopes.

For decades, researchers have turned to a tracer molecule called carbon monoxide, which goes hand-in-hand with the hydrogen molecules, revealing their location. But this method has limitations. In regions where the gas is just beginning to pool -- the earliest stage of cloud formation -- there is no carbon monoxide.

"Ultraviolet light destroys the carbon monoxide," said Langer. "In the space between stars, where the gas is very thin, there is not enough dust to shield molecules from destruction by ultraviolet light."

A different tracer -- ionized carbon - does, however, linger in these large but relatively empty spaces, and can be used to pin down the hydrogen molecules. Researchers have observed ionized carbon from space before, but Herschel has, for the first time, provided a dramatically improved geographic map of its location and abundance in the galaxy.

"Thanks to Herschel's incredible sensitivity, we can separate material moving at different speeds," said Paul Goldsmith, a co-author and the NASA Herschel Project Scientist at JPL. "We finally can get the whole picture of what's available to make future generations of stars."

Read a more in-depth story about this research from the European Space Agency here. The technical paper is online here.

.


Related Links
Herschel at Caltech
Herschel at NASA
Herschel at ESA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
A Video Map of Motions in the Nearby Universe
Manoa HI (SPX) Jun 13, 2013
An international team of researchers, including University of Hawaii at Manoa astronomer Brent Tully, has mapped the motions of structures of the nearby universe in greater detail than ever before. The maps are presented as a video, which provides a dynamic three-dimensional representation of the universe through the use of rotation, panning, and zooming. The video was announced last week ... read more


STELLAR CHEMISTRY
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

STELLAR CHEMISTRY
Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

SciTechTalk: Mars rover readies for 'road trip' on the Red Planet

STELLAR CHEMISTRY
The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

STELLAR CHEMISTRY
China astronauts enter space module

China to send second woman into space: officials

Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

STELLAR CHEMISTRY
Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

Experiments, Spacewalk Preps and Maintenance for Crew

STELLAR CHEMISTRY
Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

STELLAR CHEMISTRY
Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

'Dust trap' around distant star may solve planet formation mystery

STELLAR CHEMISTRY
Chilean, U.S. firms join effort to expand e-waste recycling

Space Debris - One Solution

Moon Radiation Findings May Reduce Health Risks to Astronauts

Sony eyes long game despite console launch triumph




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement