. 24/7 Space News .
CHIP TECH
Semiconductors combine forces in photocatalysis
by Staff Writers
Washington DC (SPX) Jan 25, 2019

file illustration only

A significant advance in the photocatalytic activity of conventional materials is demonstrated by a two-dimensional heterostructure comprising nanolayers of two semiconductors: black phosphorus and bismuth tungstate.

As researchers have reported in the journal Angewandte Chemie, this catalyst harnesses the energy of visible light to split water and produce hydrogen, and to break down nitrogen monoxide in exhaust gas.

Just as plants use photosynthesis, certain semiconductors are able to absorb the energy of light and use this to power chemical reactions. For example, bismuth tungstate (Bi(2)WO(6)) should, in principle, be suitable for the photocatalytic degradation of nitrogen monoxide (NO) and the production of hydrogen.

However, results so far have not been very satisfactory. One approach to improving the performance of this material is to bind two-dimensional nanolayers of the bismuth tungstate into a layered heterojunction with a second nanolayer of a different semiconductor.

A team led by Dongyun Chen and Jianmei Lu at Soochow University, Suzhou, and Jiangsu University, Zhenjiang (China) found that black phosphorus may be a suitable partner for this type of heterostructure. This material demonstrates photocatalytic properties, though it has had limited application to date.

Black phosphorus consists of rippled layers of six-membered rings that can be split into individual atomic layers. The researchers covered these nanolayers evenly with 50 nm chips of bismuth tungstate. The two semiconductors are in very close contact in this simply and efficiently producible heterostructure, resulting in a synergetic effect.

The black phosphorus provides a broad absorption range into the spectrum of sunlight. The energy levels of the electrons in the two materials are favorably placed. This allows the light-induced positive and negative charges (electron-hole pairs) to be efficiently separated, transported within the heterostructure, and transferred to molecules. The researchers propose that the charge-transfer mechanism resembles the so-called Z-scheme present in photosynthesis.

As expected, the photocatalytic degradation of NO by the heterostructure was significantly more effective than with other bismuth-based materials. For the photocatalytic production of hydrogen, an additional platinum-based co-catalyst was added.

Under irradiation, electrons can move from the heterostructure to platinum atoms, and from there they are able to rapidly reduce the H(+) ions in water to form hydrogen gas. With visible light, the efficiency of the catalytic process was nine times that of pure bismuth tungstate.

The researchers suggest that black phosphorus may have broad applicability that extends to renewable energies and treatment of exhaust gases.

Research paper


Related Links
Wiley
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Theoreticians investigate puzzling phenomenon in a quantum gas
Frankfurt, Germany (SPX) Jan 18, 2019
Imagine a disc made of an insulator with a conducting edge along which a current always flows in the same direction. "This makes it impossible for a quantum particle to be impeded, because the state of flowing in the other direction simply doesn't exist," explains Bernhard Irsigler, the first author of the study. In other words: in the edge state, the current flows without resistance. This could be used, for example, to increase the stability and energy efficiency of mobile devices. Research is al ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
China is growing crops on the far side of the moon

Beans to be next vegetable on astronauts' menu by 2021

Moon sees first cotton-seed sprout

Space dreams: Alum Frank Bunger's quest to make space tourism a reality

CHIP TECH
Japan launches Epsilon-4 Rocket with 7 satellites

United Launch Alliance Successfully Launches NROL-71 in Support of National Security

Air Force and its mission partners successfully launch NROL71

Russia ready to design new super heavy rocket says Rogozin

CHIP TECH
Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

CHIP TECH
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

CHIP TECH
A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

How much do European citizens know about space?

Competition for Young Space Entrepreneurs launched

Australia's 'space city' hosts rising stars from around the globe

CHIP TECH
New technology uses lasers to transmit audible messages to specific people

'The new oil': Dublin strikes it rich as Europe's data hub

New insights into magnetic quantum effects in solids

A new method developed to produce precursors for high-strength carbon fibers processing

CHIP TECH
Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

CHIP TECH
Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.