. 24/7 Space News .
Seeking New Earths? Look For Dust.

illustration only

Boston - Feb 24, 2004
If alien astronomers around a distant star had studied the young Sun four-and-a-half billion years ago, could they have seen signs of a newly-formed Earth orbiting this innocuous yellow star? The answer is yes, according to Scott Kenyon (Smithsonian Astrophysical Observatory) and Benjamin Bromley (University of Utah).

Moreover, their computer model says that we can use the same signs to locate places where Earth-size planets currently are forming -- young worlds that, one day, may host life of their own.

The key to locating newborn Earths, say Kenyon and Bromley, is to look not for the planet itself, but for a ring of dust orbiting the star that is a fingerprint of terrestrial (rocky) planet formation.

"Chances are, if there's a ring of dust, there's a planet," says Kenyon.

Good Planets Are Hard To Find
Our solar system formed from a swirling disk of gas and dust, called a protoplanetary disk, orbiting the young Sun. The same materials are found throughout our galaxy, so the laws of physics predict that other star systems will form planets in a similar manner.

Although planets may be common, they are difficult to detect because they are too faint and located too close to a much brighter star. Therefore, astronomers seek planets by looking for indirect evidence of their existence. In young planetary systems, that evidence may be present in the disk itself, and in how the planet affects the dusty disk from which it forms.

Large, Jupiter-sized planets possess strong gravity. That gravity strongly affects the dusty disk. A single Jupiter can clear a ring-shaped gap in the disk, warp the disk, or create concentrated swaths of dust that leave a pattern in the disk like a wake from a boat. The presence of a giant planet may explain the wake-like pattern seen in the disk around the 350 million-year-old star Vega.

Small, Earth-sized worlds, on the other hand, possess weaker gravity. They affect the disk more weakly, leaving more subtle signs of their presence. Rather than looking for warps or wakes, Kenyon and Bromley recommend looking to see how bright the star system is at infrared (IR) wavelengths of light. (Infrared light, which we perceive as heat, is light with longer wavelengths and less energy than visible light.)

Stars with dusty disks are brighter in the IR than stars without disks. The more dust a star system holds, the brighter it is in the IR. Kenyon and Bromley have shown that astronomers can use IR brightnesses not only to detect a disk, but also to tell when an Earth-sized planet is forming within that disk.

"We were the first to calculate the expected levels of dust production and associated infrared excesses, and the first to demonstrate that terrestrial planet formation produces observable amounts of dust," says Bromley.

Building Planets From The Ground Up
The most prevalent theory of planet formation calls for building planets "from the ground up." According to the coagulation theory, small bits of rocky material in a protoplanetary disk collide and stick together. Over thousands of years, small clumps grow into larger and larger clumps, like building a snowman one handful of snow at a time. Eventually, the rocky clumps grow so large that they become full-fledged planets.

Kenyon and Bromley model the planet formation process using a complex computer program. They "seed" a protoplanetary disk with a billion planetesimals 0.6 miles (1 kilometer) in size, all orbiting a central star, and step the system forward in time to see how planets evolve from those basic ingredients.

"We made the simulation as realistic as we could and still complete the calculations in a reasonable amount of time," says Bromley.

They found the planet formation process to be remarkably efficient. Initially, collisions between planetesimals occur at low velocities, so colliding objects tend to merge and grow. At a typical Earth-Sun distance, it takes only about 1000 years for 1-kilometer objects to grow into 100-kilometer (60-mile) objects. Another 10,000 years produces 600-mile-diameter protoplanets, which grow over an additional 10,000 years to become 1200-mile-diameter protoplanets. Hence, Moon-sized objects can form in as little as 20,000 years.

As planetesimals within the disk grow larger and more massive, their gravity grows stronger. Once a few of the objects reach a size of 600 miles, they begin "stirring up" the remaining smaller objects. Gravity slingshots the smaller, asteroid-sized chunks of rock to higher and higher speeds. They travel so fast that when they collide, they don't merge -- they pulverize, smashing each other apart violently. While the largest protoplanets continue to grow, the rest of the rocky planetesimals grind each other into dust.

"The dust forms right where the planet is forming, at the same distance from its star," says Kenyon. As a result, the temperature of the dust indicates where the planet is forming. Dust in a Venus-like orbit will be hotter than dust in an Earth-like orbit, giving a clue to the infant planet's distance from its star.

The size of the largest objects in the disk determines the dust production rate. The amount of dust peaks when 600-mile protoplanets have formed.

"The Spitzer Space Telescope should be able to detect such dust peaks," says Bromley.

Currently, Kenyon and Bromley's terrestrial planet formation model covers only a fraction of the solar system, from the orbit of Venus to a distance about halfway between Earth and Mars. In the future, they plan to extend the model to encompass orbits as close to the Sun as Mercury and as distant as Mars.

They also have modeled the formation of the Kuiper Belt -- a region of small, icy and rocky objects beyond the orbit of Neptune. The next logical step is to model the formation of gas giants like Jupiter and Saturn.

"We're starting at the edges of the solar system and working inward," Kenyon says with a grin. "We're also working out way up in mass. The Earth is 1000 times more massive than a Kuiper Belt object, and Jupiter is 1000 times more massive than the Earth."

"Our ultimate goal is to model and understand the formation of our entire solar system." Kenyon estimates that their goal is attainable within a decade, as computer speed continues to increase, enabling the simulation of an entire solar system.

This research was published in the February 20, 2004, issue of The Astrophysical Journal Letters. Additional information and animations are available online.

Related Links
Harvard-Smithsonian Center for Astrophysics
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Oxygen And Carbon Found In Atmosphere Of An Extrasolar Planet
Baltimore - Feb 09, 2004
NASA's Hubble Space Telescope has detected, for the first time ever, the presence of oxygen and carbon in the atmosphere of a planet outside our solar system.







  • SDL Receives Contract To Research Plants For Space Travel
  • Lockheed Martin Forms New Space Exploration Organization
  • Europe's Space Programme Is Looking Up
  • Europe's United Response To US Space Plans

  • ESA Prepares Mission To Search For Life On Mars
  • Opportunity Examines Trench As Spirit Prepares To Dig One
  • Can People Go To Mars
  • Was Mars Born Bone Dry

  • ATK To Supply Orbital With Orion Rocket Motors
  • Successful Launch Of Last Boeing IUS Deploys U.S. Air Force Satellite
  • Lockheed Martin-Built Titan 4 Launches Defense Support Program Payload
  • Europe Set To Fly Higher Still

  • Global Warming To Squeeze Western Mountains Dry By 2050
  • Our Hazy Atmosphere: The Impact Of Aerosols On Climate
  • Cities Built On Fertile Lands
  • NASA Predicts More Tropical Rain In A Warmer World

  • Latest Kuiper Belt Object Could Be Biggest Yet
  • The Colorful Lives Of The Outer Planets
  • Getting Closer To The Lord Of The Rings
  • First Detection Of CO In Uranus

  • Interstellar Hydrogen Shadow Observed For The First Time
  • Three-Ton Science Experiment To Cruise South Pole Skies For Cosmic Rays
  • NASA Selects SwRI Proposal To Study Interstellar Boundary
  • New View Of Milky Way In Gamma Rays

  • SMART-1 Ion Engine Switched Off and Commissioning Begins
  • Smart-1 Ready For Payload Commissioning
  • SMART-1 Set For Payload Commissioning
  • SMART-1 Finally Escapes the Radiation Belts

  • Bulldog and EMS Partner To Provide Trucking Industry Satellite Security
  • Trimble to Acquire TracerNet to Expand Fleet Management Market Presence
  • Comtech Receives More Orders For Its Movement Tracking System
  • Smart and Secure Tradelanes to Extend Network Footprint To Africa

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement