. 24/7 Space News .
CHIP TECH
Scientists unlock signal frequency control of precision atom qubits
by Staff Writers
Sydney, Australia (SPX) Jul 19, 2018

The frequency spectrum of an engineered molecule. The three peaks represent three different configurations of spins within the atomic nuclei, and the distance between the peaks depends on the exact distance between atoms forming the molecule.

Australian scientists have achieved a new milestone in their approach to creating a quantum computer chip in silicon, demonstrating the ability to tune the control frequency of a qubit by engineering its atomic configuration. The work has been published in Science Advances.

A team of researchers from the Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at UNSW Sydney have successfully implemented an atomic engineering strategy for individually addressing closely spaced spin qubits in silicon.

The researchers built two qubits - one an engineered molecule consisting of two phosphorus atoms with a single electron, and the other a single phosphorus atom with a single electron - and placed them just 16 nanometres apart in a silicon chip.

By patterning a microwave antenna above the qubits with precision alignment, the qubits were exposed to frequencies of around 40GHz. The results showed that when changing the frequency of the signal used to control the electron spin, the single atom had a dramatically different control frequency compared to the electron spin in the molecule of two phosphorus atoms.

The UNSW researchers collaborated closely with experts at Purdue University, who used powerful computational tools to model the atomic interactions and understand how the position of the atoms impacted the control frequencies of each electron even by shifting the atoms by as little as one nanometre.

"Individually addressing each qubit when they are so close is challenging," says UNSW Scientia Professor Michelle Simmons, Director CQC2T and co-author of the paper.

"The research confirms the ability to tune neighbouring qubits into resonance without impacting each other."

Creating engineered phosphorus molecules with different separations between the atoms within the molecule allows for families of qubits with different control frequencies. Each molecule can be operated individually by selecting the frequency that controls its electron spin.

"We can tune into this or that molecule - a bit like tuning in to different radio stations," says Sam Hile, lead co-author of the paper and Research Fellow at UNSW.

"It creates a built-in address which will provide significant benefits for building a silicon quantum computer."

Tuning in and individually controlling qubits within a 2 qubit system is a precursor to demonstrating the entangled states that are necessary for a quantum computer to function and carry out complex calculations.

These results show how the team - led by Professor Simmons - have further built on their unique Australian approach of creating quantum bits from precisely positioned individual atoms in silicon.

By engineering the atomic placement of the atoms within the qubits in the silicon chip, the molecules can be created with different resonance frequencies. This means that controlling the spin of one qubit will not affect the spin of the neighbouring qubit, leading to fewer errors - an essential requirement for the development of a full-scale quantum computer.

"The ability to engineer the number of atoms within the qubits provides a way of selectively addressing one qubit from another, resulting in lower error rates even though they are so closely spaced," says Professor Simmons.

"These results highlight the ongoing advantages of atomic qubits in silicon."

This latest advance in spin control follows from the team's recent research into controllable interactions between two qubits.


Related Links
University of New South Wales
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Quantum dot white LEDs achieve record efficiency
Washington DC (SPX) Jul 13, 2018
Researchers have demonstrated nanomaterial-based white-light-emitting diodes (LEDs) that exhibit a record luminous efficiency of 105 lumens per watt. Luminous efficiency is a measure of how well a light source uses power to generate light. With further development, the new LEDs could reach efficiencies over 200 lumens per watt, making them a promising energy-efficient lighting source for homes, offices and televisions. "Efficient LEDs have strong potential for saving energy and protecting the envi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
NASA and Peanuts Worldwide to Collaborate on Deep Space Learning Activities

Russian cargo ship docks at ISS in record time

Google parent 'graduates' moonshot projects Loon, Wing

Testing Refines Requirements for Deep Space Habitat Design

CHIP TECH
Largest-ever solid rocket motor poised for first hot firing

Experimental Spaceplane Program Successfully Completes Engine Test Series

Aerojet Rocketdyne demonstrates 24-Hour turnaround of AR-22 Engine

Chinese Space Company Planning Launch of Largest Privately Owned Liquid Rocket

CHIP TECH
Scientists Discover "Ghost Dunes" On Mars

Airbus wins two ESA studies for Mars Sample Return mission

NASA listens out for Opportunity everyday

UK space sector set to benefit from new European Space Agency contract

CHIP TECH
China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

CHIP TECH
mu Space confirms payload on Blue Origin's upcoming New Shepard flight

China Mulls Creation of Joint Global Satellite System with Russia

EIB and ESA to cooperate on increasing investments in the European Space Sector

Laser-Based System is Set to Expand Space-to-Ground Communication

CHIP TECH
Chinese scientists achieve success in nitrogen metallization

A high-yield perovskite catalyst for the oxidation of sulfides

Photonic capsules for injectable laser resonators

Paper-cut provides model for 3D intelligent nanofabrication

CHIP TECH
TESS Spacecraft Continues Testing Prior to First Observations

NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

Rocky planet neighbor looks familiar, but is not Earth's twin

NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

CHIP TECH
First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.