. | . |
Scientists solve meteorite mystery with high-pressure X-ray experiments by Brooks Hays Washington (UPI) Jun 7, 2017 Scientists have long struggled to understand how different types of silica, which require distinction formation conditions, are commonly found in the same meteorite. Thanks to PETRA III, the X-ray light accelerator at DESY, the German research facilities, scientists finally have some answers. Researchers used high-pressure experiments to better understand the conditions under which different types of quartz minerals form. The mineral silicon dioxide, or cristobalite, is rare on Earth, but is common in meteorites sourced from the moon and Mars. It is only formed under unique, high-temperature conditions. In many moon and Mars meteorite fragments found on Earth, scientists have discovered cristobalite coexisting with seifertite, another form of silica. Seifertite only forms under extremely high pressures. "Finding cristobalite and seifertite in the same grain of meteorite material is enigmatic, as they form under vastly different pressures and temperatures," Leonid Dubrovinsky, a planetary scientist at the University of Bayreuth, said in a news release. "Triggered by this curious observation, the behavior of cristobalite at high-pressures has been examined by numerous experimental and theoretical studies for more than two decades, but the puzzle could not be solved." X-ray accelerators at DESY allowed researchers to observe the behavior of cristobalite under extreme pressure with unprecedented clarity. The images suggest the mineral adopts a new phase while subjected to high pressures, but reverts to its normal form once the pressure is released. However, if extreme pressures are exerted unevenly, researchers found cristobalite can be transformed into seifertite. The experiments also showed the conversion of cristobalite to seifertite can occur at much lower pressures than is required for the transformation of basic silica into seifertite. "Our study clarifies how squeezed cristobalite can transform into seifertite at much lower pressure than expected," said researcher Ana Černok, who know works at Open University. "Therefore, meteorites that contain seifertite associated with cristobalite have not necessarily experienced massive impacts." The findings -- detailed in the journal Nature Communications -- suggest scientist must reconsider their analysis of meteorites and their assumptions about the types of impacts that yielded them. "They provide clear evidence that neither cristobalite nor seifertite should be considered as reliable tracers of the peak shock conditions experienced by meteorites," Dubrovinsky said.
San Francisco CA (SPX) Apr 18, 2017 Experiments conducted high in the skies over New Mexico suggest that balloon-borne sensors could be useful in detecting the infrasound signals generated by small, extraterrestrial debris entering Earth's atmosphere, according to a report at the 2017 Seismological Society of America's(SSA) Annual Meeting. Infrasound, sometimes called low-frequency sound, is sound waves that occur at frequen ... read more Related Links Asteroid and Comet Mission News, Science and Technology
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |