Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Scientists reach the ultimate goal - controlling chirality in carbon nanotubes
by Staff Writers
Helsinki, Finland (SPX) May 03, 2013


This image shows the initial carbon cap formation on Co nanoparticles. Credit: Esko Kauppinen.

An ultimate goal in the field of carbon nanotube research is to synthesise single-walled carbon nanotubes (SWNTs) with controlled chiralities. Twenty years after the discovery of SWNTs, scientists from Aalto University in Finland, A.M. Prokhorov General Physics Institute RAS in Russia and the Center for Electron Nanoscopy of Technical University of Denmark (DTU) have managed to control chirality in carbon nanotubes during their chemical vapor deposition synthesis.

Carbon nanotube structure is defined by a pair of integers known as chiral indices (n,m), in other words, chirality.

Chirality defines the optical and electronic properties of carbon nanotubes, so controlling it is a key to exploiting their practical applications, says Professor Esko I. Kauppinen, the leader of the Nanomaterials Group in Aalto University School of Science.

Over the years, substantial progress has been made to develop various structure-controlled synthesis methods. However, precise control over the chiral structure of SWNTs has been largely hindered by a lack of practical means to direct the formation of the metal nanoparticle catalysts and their catalytic dynamics during tube growth.

We achieved an epitaxial formation of Co nanoparticles by reducing a well-developed solid solution in CO, reveals Maoshuai He, a postdoctoral researcher at Aalto University School of Chemical Technology.

For the first time, the new catalyst was employed for selective growth of SWNTs, adds senior staff scientist Hua Jiang from Aalto University School of Science.

By introducing the new catalysts into a conventional CVD reactor, the research team demonstrated preferential growth of semiconducting SWNTs (~90%) with an exceptionally high population of (6,5) tubes (53%) at 500C. Furthermore, they also showed a shift of the chiral preference from (6,5) tubes at 500C to (7, 6) and (9, 4) nanotubes at 400C.

These findings open new perspectives both for structural control of SWNTs and for elucidating their growth mechanisms, thus are important for the fundamental understanding of science behind nanotube growth, comments Professor Juha Lehtonen from Aalto University.

The research has been recently published in a new Nature Publishing Group journal Scientific Reports, 3 (2013), 1460. Link to article

.


Related Links
Aalto University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Dark field imaging of rattle-type silica nanorattles coated gold nanoparticles in vitro and in vivo
Beijing, China (SPX) May 03, 2013
In recent years, metal nanoparticles have showed great application prospect in the field of biological imaging, cancer diagnosis and treatment due to its unique optical scattering and optical absorption properties. In many metal materials, gold nanoparticles have caused concerns in the field because of its simple preparation, easy to modify advantages. However, the poor stability in physio ... read more


NANO TECH
Scientists Use Laser to Find Soviet Moon Rover

Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

NANO TECH
NASA Invites Public to Send Names And Messages to Mars

Studying meteorites may reveal Mars' secrets of life

NASA says Mars rover Opportunity back on the job after standby time

Opportunity in Standby as Commanding Moratorium Ends

NANO TECH
NASA's Chief Defends Commercial Spaceflight Agreements

NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

NANO TECH
On Course for Shenzhou 10

Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

NANO TECH
NASA to pay Russia $424 mln more for lift into space

NASA Extends Crew Flight Contract with Russian Space Agency

Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

NANO TECH
Checkout is underway with O3b Networks' four satellites to be orbited on the next Arianespace Soyuz launch

The Well-Built Italian

O3b Networks' first four satellites arrive for the next Arianespace Soyuz launch

On the record with... Stephane Israel, Arianespace Chairman and CEO

NANO TECH
Two New Exoplanets Detected with Kepler, SOPHIE and HARPS-N

Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

NANO TECH
NASA Partners With Utah State University's Space Dynamics Lab

Silicone liquid crystal stiffens with repeated compression

Researchers tackle collapsing bridges with new technology

Penn Research Helps to Show How Turbulence Can Occur Without Inertia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement