. | . |
Scientists produce status check on quantum teleportation by Staff Writers York, Germany (SPX) Oct 05, 2015
Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation - transferring the quantum structure of an object from one place to another without physical transmission - has moved from the realms of Star Trek fantasy to tangible reality. Quantum teleportation is an important building block for quantum computing, quantum communication and quantum network and, eventually, a quantum Internet. While theoretical proposals for a quantum Internet already exist, the problem for scientists is that there is still debate over which of various technologies provides the most efficient and reliable teleportation system. This is the dilemma which an international team of researchers, led by Dr Stefano Pirandola of the Department of Computer Science at the University of York, set out to resolve. In a paper published in Nature Photonics, the team, which included scientists from the Freie Universitat Berlin and the Universities of Tokyo and Toronto, reviewed the theoretical ideas around quantum teleportation focusing on the main experimental approaches and their attendant advantages and disadvantages. None of the technologies alone provide a perfect solution, so the scientists concluded that a hybridisation of the various protocols and underlying structures would offer the most fruitful approach. For instance, systems using photonic qubits work over distances up to 143 kilometres, but they are probabilistic in that only 50 per cent of the information can be transported. To resolve this, such photon systems may be used in conjunction with continuous variable systems, which are 100 per cent effective but currently limited to short distances. Most importantly, teleportation-based optical communication needs an interface with suitable matter-based quantum memories where quantum information can be stored and further processed. Dr Pirandola, who is also a member of the York Centre for Quantum Technologies, said: "We don't have an ideal or universal technology for quantum teleportation. The field has developed a lot but we seem to need to rely on a hybrid approach to get the best from each available technology. "The use of quantum teleportation as a building block for a quantum network depends on its integration with quantum memories. The development of good quantum memories would allow us to build quantum repeaters, therefore extending the range of teleportation. They would also give us the ability to store and process the transmitted quantum information at local quantum computers. "This could ultimately form the backbone of a quantum Internet. The revised hybrid architecture will likely rely on teleportation-based long-distance quantum optical communication, interfaced with solid state devices for quantum information processing."
Related Links University of York Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |