![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Edmonton, Canada (SPX) Dec 14, 2018
Research confirms new minerals are capturing and storing carbon in a new paper by University of Alberta geologists and their collaborators. The minerals, members of the hydrotalcite group, are the first outside of the carbonate family to naturally capture atmospheric CO2 in mine waste, important as society continues to forge ways to lower our carbon emissions and combat climate change. "This research confirmed that hydrotalcites are capable of sequestering atmospheric CO2 in mine waste," said Connor Turvey, who conducted this research during his PhD studies under the supervision of Sasha Wilson. "Hydrotalcites are trapping the CO2 deeper into the tailings where carbonate minerals were unable to form." Mine tailings are composed of the waste minerals removed from the ground in the mining process. As these minerals are exposed to the atmosphere and to rain water, they can react to form new minerals that trap CO2 from the atmosphere. The research highlights the potential for improving carbon capture one to two metres beneath the surface of mining wastes, where most sequestration usually occurs. "One thing that this indicates is that the capacity for carbon sequestration at this depth could be improved by providing a more plentiful source of carbon to those depths," added Wilson, associate professor in the Department of Earth and Atmospheric Sciences and expert in economic geology. The study was conducted at Woodsreef Asbestos Mine in New South Wales, Australia. Carbon capture, utilization, and storage in minerals is of growing importance for both academia and industry. This discovery points to the potential to use mineral waste from mines to sequester carbon more effectively, supporting remediation efforts. "Merely going carbon neutral is no longer going to be enough to prevent climate change from occurring," said Turvey. "What is now needed is for our world to become carbon negative." This means that industry must both reduce carbon emissions while simultaneously exploring carbon sequestration to actively draw excess CO2 from the atmosphere--making discoveries like this one more important than ever.
Research Report: "Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings," was published in the International Journal of Greenhouse Gas Control (doi: 10.1016/j.ijggc.2018.09.015).
![]() ![]() Underground life has a carbon mass hundreds of times larger than humans' Knoxville TN (SPX) Dec 11, 2018 Microorganisms living underneath the surface of the earth have a total carbon mass of 15 to 23 billion tons, hundreds of times more than that of humans, according to findings announced by the Deep Carbon Observatory and coauthored by UT Professor of Microbiology Karen Lloyd. Carbon is the most prevalent element in living beings because it is part of almost all the molecules that are key for biological processes, including proteins, fats, and even DNA. Ninety percent of the earth's carbon is in the ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |