. | . |
Scientists find exception to the laws of thermodynamics by Brooks Hays Los Angeles (UPI) Aug 19, 2016
To effectively control and study ions, scientists must cool the high-energy particles. To do so, they rely on a basic premise of the laws of thermodynamics -- that an object with a higher temperature will eventual cool to the same temperature as its surroundings. An apple pie, for example, will eventually cool to room temperature. To cool ions, researchers immerse them in clouds of super-cooled gas molecules. Most of the time, scientists are unconcerned with the final temperature of the ions. They're just trying to cool them enough to more easily manipulate them. Scientists at the University of California Los Angeles tracked the entire ion cooling process and found the particles never truly cool to the temperature of the surrounding gas molecules. Further experimentation showed that under certain conditions cooling ions settle on one of two final resting temperatures depending on their original temperatures. "This apparent departure from the familiar laws of thermodynamics is akin to our warm apple pie either cooling as expected or spontaneously bursting into flames, depending on the pie's exact temperature when it is placed in the window," Eric Hudson, associate professor of physics at UCLA, said in a news release. Scientists used lasers to super-cool 3 million calcium atoms to just above absolute zero and then allowed them to mix with 10 barium ions in a closed system. When the system reached its final resting temperature, the scientists extracted the ions and found varying final temperatures, which were dependent on starting temperature and ion number. The results show that the hybrid atom-ion trap cooling method yields nonequilibrium behavior. Researchers detailed the departure from the laws of thermodynamics in the journal Nature Communications. "Of course, this work does not violate the laws of thermodynamics, but it does demonstrate there are still some interesting, potentially useful things to learn about buffer gas cooling," explained John Gillaspy, a physics division program director at the National Science Foundation. "This is the sort of fundamental research that can really guide a wide range of more applied research efforts, helping other scientists and engineers to avoid going down dead-end paths and illuminating more fruitful directions they might take instead."
Related Links Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |