![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Vancouver, Canada (SPX) Oct 05, 2018
Researchers in Canada, the United States and Europe have developed a new way to remotely measure Earth's magnetic field - by zapping a layer of sodium atoms floating 100 kilometres above the planet with lasers on the ground. The technique, documented this week in Nature Communications, fills a gap between measurements made at the Earth's surface and at much higher altitude by orbiting satellites. "The magnetic field at this altitude in the atmosphere is strongly affected by physical processes such as solar storms and electric currents in the ionosphere," says Paul Hickson an astrophysicist at the University of British Columbia (UBC) and author on the paper. "Our technique not only measures magnetic field strength at an altitude that has traditionally been hidden, it has the side benefit of providing new information on space weather and atomic processes occurring in the region." Sodium atoms are continually deposited in the mesosphere by meteors that vaporize as they enter Earth's atmosphere. Researchers at the European Southern Observatory (ESO), the University of Mainz and UBC used a ground-based laser to excite the layer of sodium atoms and monitor the light they emit in response. "The excited sodium atoms wobble like spinning tops in the presence of a magnetic field," explains Hickson. "We sense this as a periodic fluctuation in the light we're monitoring, and can use that to determine the magnetic field strength."
![]() ![]() ICESat-2 Laser Fires for 1st Time, Measures Antarctic Height Greenbelt MD (SPX) Oct 04, 2018 The laser instrument that launched into orbit last month aboard NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) fired for the first time Sept. 30. With each of its 10,000 pulses per second, the instrument is sending 300 trillion green photons of light to the ground and measuring the travel time of the few that return: the method behind ICESat-2's mission to monitor Earth's changing ice. By the morning of Oct. 3, the satellite returned its first height measurements across the Antarctic ice sh ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |