. | . |
Scientists create tiny laser using silver nanoparticles by Brooks Hays Espoo, Finland (UPI) Jan 3, 2017
Scientists in Finland have paved the way for a new breed of ultrafast nanoscale lasers. Researchers at Aalto University have created a laser that works at such minuscule scales, the light can bounce back and forth just a few hundred times. The plasmic laser generates visible light waves using dark lattice modes, a first. Most lasers rely on mirrors to generate the feedback signal necessary for laser light. The nano laser uses radiative coupling between silver nanoparticles, instead. The laser-generating nanoparticles are arranged in a periodic array, each particle -- measuring just 100 nanometers across -- acts as a tiny antenna. The input energy necessary to trigger laser light is provided by organic fluorescent molecules. Because the laser light wavelengths and the spacing between nanoparticles match, the array radiates in unison. Tiny lasers can be tremendously useful in science, but they can also be extremely difficult to work with. In this case, laser light created at such small scales can be too short-lived to be useful. Researchers skirted the problem by using what are called "dark modes." "A dark mode can be intuitively understood by considering regular antennas: A single antenna, when driven by a current, radiates strongly, whereas two antennas -- if driven by opposite currents and positioned very close to each other -- radiate very little," researcher Paivi Torm said in a news release. "A dark mode in a nanoparticle array induces similar opposite-phase currents in each nanoparticle, but now with visible light frequencies." Researchers also found a unique way to let light escape the confines of the tiny array. "By utilizing the small size of the array, we found an escape route for the light," explained Ph.D. student Heikki Rekola. "Towards the edges of the array, the nanoparticles start to behave more and more like regular antennas that radiate to the outer world." Researchers detailed their new laser in the journal Nature Communications.
Related Links Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |