. 24/7 Space News .
NANO TECH
Scientists build wrench 1.7 nanometers wide
by Staff Writers
Burlington VT (SPX) Sep 25, 2015


Like a wrench hunting for a bolt, this computer simulation, created by University of Vermont chemist Jianing Li, shows a pillarene ring getting found and embraced by a larger chemical structure. The Vermont chemistry team made models of both pieces and then, programmed with Newton's equations, watched how they interacted on a supercomputer at UVM's Vermont Advanced Computing Core. The take-home message: once the wrench attaches to the bolt -- it stays there, holding its shape. This team's discovery allows them to precisely control nanoscale shapes and holds promise as a highly accurate and fast method of creating customized molecules -- one of the foundational needs for making a new generation of complex synthetic materials, including polymers and medicines. Image courtesy Jianing Li, UVM. Watch a video on the research here.

Hold up your two hands. They are identical in structure, but mirror opposites. No matter how hard you try, they can't be superimposed onto each other. Or, as chemists would say, they have "chirality," from the Greek word for hand. A molecule that is chiral comes in two identical, but opposite, forms--just like a left and right hand.

University of Vermont chemist Severin Schneebeli has invented a new way to use chirality to make a wrench. A nanoscale wrench. His team's discovery allows them to precisely control nanoscale shapes and holds promise as a highly accurate and fast method of creating customized molecules.

This use of "chirality-assisted synthesis" is a fundamentally new approach to control the shape of large molecules--one of the foundational needs for making a new generation of complex synthetic materials, including polymers and medicines.

The UVM team's results were presented online, September 9, in the top-ranked chemistry journal Angewandte Chemie.

Like Legos
Experimenting with anthracene, a substance found in coal, Schneebeli and his team assembled C-shaped strips of molecules that, because of their chirality, are able to join each other in only one direction. "They're like Legos," Schneebeli explains. These molecular strips form a rigid structure that's able to hold rings of other chemicals "in a manner similar to how a five-sided bolt head fits into a pentagonal wrench," the team writes.

The C-shaped strips can join to each other, with two bonds, in only one geometric orientation. So, unlike many chemical structures--which have the same general formula but are flexible and can twist and rotate into many different possible shapes--"this has only one shape," Schneebeli says. "It's like a real wrench," he says--with an opening a hundred-thousand-times smaller than the width of human hair: 1.7 nanometers.

"It completely keeps its shape," he explains, even in various solvents and at many different temperatures, "which makes it pre-organized to bind to other molecules in one specific way," he says.

This wrench, the new study shows, can reliably bind to a family of well-known large molecules called "pillarene macrocycles." These rings of pillarene have, themselves, often been used as the "host," in chemistry-speak, to surround and modify other "guest" chemicals in their middle--and they have many possible applications from controlled drug delivery to organic light-emitting substances.

"By embracing pillarenes," the Vermont team writes, "the C-shaped strips are able to regulate the interactions of pillarene hosts with conventional guests." In other words, the chemists can use their new wrench to remotely adjust the chemical environment inside the pillarene in the same way a mechanic can turn an exterior bolt to adjust the performance inside an engine.

The new wrench can make binding to the inside of the pillarene rings "about one hundred times stronger," than it would be without the wrench, Schneebeli says.

Making Models
Also, "because this kind of molecule is rigid, we can model it in the computer and project how it looks before we synthesize it in the lab," says UVM theoretical chemist Jianing Li, Schneebeli's collaborator on the research and a co-author on the new study. Which is exactly what she did, creating detailed simulations of how the wrench would work, using computer processors in the Vermont Advanced Computing Core.

"This is a revolutionary idea," Li said, "We have 100% control of the shape, which gives great atomic economy--and lets us know what will happen before we start synthesizing in the lab."

In the lab, post-doctoral researcher and lead author Xiaoxi Liu, undergraduate Zackariah Weinert, and other team members were guided by the computer simulations to test the actual chemistry. Using a mass spectrometer and an NMR spectrometer in the UVM chemistry department, the team was able to confirm Schneebeli's idea.

Creative Simplicity
Sir Fraser Stoddart, a world-leading chemist at Northwestern University, described the new study as, "Brilliant and elegant! Creative and simple." And, indeed, it's the simplicity of the approach that makes it powerful, Schneebeli says. "It's all based on geometry that controls the symmetry of the molecules. This is the only shape it can take--which makes it very useful."

Next, the team aims to modify the C-shaped pieces--which are tied together with two bonds formed between two nitrogens and bromines--to create other shapes. "We're making a special kind of spiral which is going to be flexible like a real spring," Schneebeli explains, but will hold its shape even under great stress.

"This helical shape could be super-strong and flexible. It could create new materials, perhaps for safer helmets or materials for space," Schneebeli says. "In the big picture, this work points us toward synthetic materials with properties that, today, no material has."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Vermont
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanostructures for contactless control
Munich, Germany (SPX) Sep 25, 2015
Chemists at Ludwig-Maximilians-Univeristaet (LMU) in Munich have fabricated a novel nanosheet-based photonic crystal that changes color in response to moisture. The new material could form the basis for humidity-sensitive contactless control of interactive screens on digital devices. LMU chemists have developed a photonic crystal from ultrathin nanosheets which are extremely sensitive to m ... read more


NANO TECH
Russian scientist hope to get rocket fuel, water, oxygen from Lunar ice

NASA's Lunar Reconnaissance Orbiter's Dance with Eclipses

China to rehearse new carrier rocket for lunar mission

NASA's LRO discovers Earth's pull is 'massaging' our moon

NANO TECH
NASA's Big Mars Story

Mars water find boosts quest for extra-terrestrial life

Rover's Current Location Makes Communications a Challenge

NASA Confirms Evidence That Liquid Water Flows on Today's Mars

NANO TECH
Down to Earth and walking the line

Next stop for the Perlan 2 Glider: The edge of space

India PM heads to Silicon Valley chasing a digital dream

Airbus Defence and Space builds first hardware for Orion space vehicle's service module

NANO TECH
The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

Long March-2D carrier rocket blasts off in NW China

NANO TECH
NASA Selects Five New Flight Directors to Lead Mission Control

Space fish detail effects of microgravity on bones

Fire in the Hole: Studying How Flames Grow in Space

US astronaut misses fresh air halfway through year-long mission

NANO TECH
Spaceflight Purchases SpaceX Falcon 9 Flight For Small Satellite Industry

Assembly begins for the Ariane 5 to orbit Arabsat-6B and GSAT-15 in Nov

After Astrosat success, India set to launch 23 foreign satellites

ULA Selects Orbital ATK to Provide Solid Boosters for Atlas V and Vulcan Launch Vehicles

NANO TECH
The Most Stable Source of Light in the World

Earth-class planets likely have protective magnetic fields, aiding life

Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

NANO TECH
Latvia orders Sentinel 3-D radars

Benign by design

Pentagon delays JSTARS acquisition

Oculus proclaims dawn of 'virtual reality era'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.