. 24/7 Space News .
Scientists Find Migrating Regolith On Tiny Asteroid Itokawa

Asteroid Itokawa.
by Staff Writers
Tokyo, Japan (SPX) Apr 22, 2007
Unprecedentedly high-resolution images from the Hayabusa spacecraft, the first Japanese asteroid mission, show unexpected evidence of the migration of gravels covering the surface of asteroid Itokawa.

Hirdy Miyamoto (an Affiliate Scientist of PSI and an Associate Professor of University of Tokyo), Bob Gaskell (a Senior Scientist of PSI), and others studied the Hayabusa's high-resolution images with up to 6mm/pixel resolution and discovered that Itokawa was covered with unconsolidated millimeter-sized and larger gravels. The finest granules are in pebble size and are found only in the smooth-looking terrains that cover 20% of the surface.

This is surprising because impact ejecta on a small asteroid is expected to spread globally over its surface resulting in continuous regolith. In a paper being published today in the journal Science, Miyamoto, Gaskell, and others propose that unconsolidated gravels have globally migrated and segregated due to fluidization caused by vibrations likely induced by impacts of small meteoroids.

The key morphological evidence for the gravel migration is how gravels align in very close-up images. The directions of the longest axes of gravels might be randomly distributed if they are simply accumulated. However, statistic analyses based on mapping of the gravels indicate that Itokawa's gravels are generally aligned.

Deposits of terrestrial riverbed or landslides often show similar alignments. The directions of these asteroidal gravel migrations exactly coincide with the directions of local gravitational slopes.

When gravel is vibrated, it can be fluidized and behave as granular fluid. The most popular phenomenon related to this is called the "Brazil nut effect"---the biggest particles end up on the surface when granular material is shaken. Thus, the stranding of boulders covering the rough terrain of Itokawa may have occurred as a result of this process. Granular processes may be a major resurfacing mechanism for all small asteroids possessing regolith.

The content of this story is covered by the following paper: Miyamoto, H., H. Yano, D.J. Scheeres, S. Abe, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, M. Ishiguro, T. Michikami, A. M. Nakamura, R. Nakamura, J. Saito, and S. Sasaki, Regolith Migration and Sorting on Asteroid Itokawa, published online 19 April on Science Express, 10.1126/science.1134390. http://www.sciencexpress.org

Email This Article

Related Links
The Iron and Ice Of Our Solar System



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Celestial Fender-Bender Left Asteroid To Cool Without Insulation
Amherst MA (SPX) Apr 20, 2007
A fender-bender between two celestial bodies that left a 200 mile-wide metallic chunk to cool in space was the likely source of a group of meteorites known as the IVA iron meteorites, suggests new research by University of Massachusetts Amherst scientists. Their findings, published in the April 19 issue of the journal Nature, help explain conflicting meteorite data that has long puzzled scientists, and sheds new light on how and when asteroids form.







  • Weldon Joins Call For Space Summit To Discuss Space Program Future
  • Building Shields For Your Starship
  • Facing Tanning Booth Cancer Risk
  • Earth Magnetic Field A Hazard For Lunar Astronauts

  • Seeking A Soft Landing On Mars
  • Dust Devils Whip By Spirit
  • A Close Up Look At Martian Rocks From The Comfort Of Your Couch
  • Investigating The Dark Streak Of Victoria Crater

  • Indian Space Program Goes Commercial
  • Russia Puts 16 Foreign Satellites Into Orbit
  • Russia To Launch Four US Satellites In May
  • Indian Space Agency Set For First Commercial Launch Of Foreign Satellite

  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences

  • Rosetta And New Horizons Watch Jupiter In Joint Campaign
  • New Horizons Shows Off Its Color Camera In Io Image
  • Alice Views Jupiter And Io
  • A Look From LEISA

  • Astronomers Map Out Planetary Danger Zone
  • A New Class Of Interstellar Lighthouse
  • Dark Matter Charted Out To Five Billion Light Years
  • UK Scientists Sift Superfine Stardust

  • Longest Holiday In Space Ends As Russia Touts Lunar Tour Within Five Years
  • Back To The Moon For Some Reconnaissance
  • Rochester Triumphs In NASA Great Moonbuggy Race
  • Shanghai Vies To Win Battle Of Moon Rovers

  • Safer Air Traffic With EGNOS
  • Boeing-Led Team Developing Surface Navigation Concept For DARPA
  • Northrop Grumman Team OCX Bids On The GPS Next Generation Control Segment Contract
  • China Launches Compass Navigation Satellite

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement