![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Jul 25, 2017
As NASA's Cassini spacecraft makes its unprecedented series of weekly dives between Saturn and its rings, scientists are finding - so far - that the planet's magnetic field has no discernible tilt. This surprising observation, which means the true length of Saturn's day is still unknown, is just one of several early insights from the final phase of Cassini's mission, known as the Grand Finale. Other recent science highlights include promising hints about the structure and composition of the icy rings, along with high-resolution images of the rings and Saturn's atmosphere. Cassini is now in the 15th of 22 weekly orbits that pass through the narrow gap between Saturn and its rings. The spacecraft began its finale on April 26 and will continue its dives until Sept. 15, when it will make a mission-ending plunge into Saturn's atmosphere. "Cassini is performing beautifully in the final leg of its long journey," said Cassini Project Manager Earl Maize at NASA's Jet Propulsion Laboratory, Pasadena, California. "Its observations continue to surprise and delight as we squeeze out every last bit of science that we can get." Cassini scientists are thrilled as well - and surprised in some cases - with the observations being made by the spacecraft in the finale. "The data we are seeing from Cassini's Grand Finale are every bit as exciting as we hoped, although we are still deep in the process of working out what they are telling us about Saturn and its rings," said Cassini Project Scientist Linda Spilker at JPL.
Early Magnetic Field Analysis This observation is at odds with scientists' theoretical understanding of how magnetic fields are generated. Planetary magnetic fields are understood to require some degree of tilt to sustain currents flowing through the liquid metal deep inside the planets (in Saturn's case, thought to be liquid metallic hydrogen). With no tilt, the currents would eventually subside and the field would disappear. Any tilt to the magnetic field would make the daily wobble of the planet's deep interior observable, thus revealing the true length of Saturn's day, which has so far proven elusive. "The tilt seems to be much smaller than we had previously estimated and quite challenging to explain," said Michele Dougherty, Cassini magnetometer investigation lead at Imperial College, London. "We have not been able to resolve the length of day at Saturn so far, but we're still working on it." The lack of a tilt may eventually be rectified with further data. Dougherty and her team believe some aspect of the planet's deep atmosphere might be masking the true internal magnetic field. The team will continue to collect and analyze data for the remainder of the mission, including during the final plunge into Saturn. The magnetometer data will also be evaluated in concert with Cassini's measurements of Saturn's gravity field collected during the Grand Finale. Early analysis of the gravity data collected so far shows discrepancies compared with parts of the leading models of Saturn's interior, suggesting something unexpected about the planet's structure is awaiting discovery.
Sampling Saturn During Cassini's first dive through the gap on April 26, the spacecraft was oriented so its large, saucer-shaped antenna would act as a shield against oncoming ring particles that might cause damage. While at first it appeared that there were essentially no particles in the gap, scientists later determined the particles there are very small and could be detected using the CDA instrument. The cosmic dust analyzer was later allowed to peek out from behind the antenna during Cassini's third of four passes through the innermost of Saturn's main rings, the D ring, on June 29. During Cassini's first two passes through the inner D ring, the particle environment there was found to be benign. This prompted mission controllers to relax the shielding requirement for one orbit, in hopes of capturing ring particles there using CDA. As the spacecraft passed through the ring, the CDA instrument successfully captured some of the tiniest particles there, which the team expects will provide significant information about their composition. During the spacecraft's final five orbits, as well as it final plunge, the INMS instrument will obtain samples deeper down in the atmosphere. Cassini will skim through the outer atmosphere during these passes, and INMS is expected to send particularly important data on the composition of Saturn's atmosphere during the final plunge.
Amazing Images On two of Cassini's close passes over Saturn, on April 26 and June 29, the cameras captured ultra-close views of the cloudscape racing past, showing the planet from closer than ever before. Imaging scientists have combined images from these dives into two new image mosaics and a movie sequence. (Specifically, the previously released April 26 movie was updated to greatly enhance its contrast and sharpness.) Launched in 1997, Cassini has orbited Saturn since arriving in 2004 for an up-close study of the planet, its rings and moons, and its vast magnetosphere. Cassini has made numerous dramatic discoveries, including a global ocean with indications of hydrothermal activity within the moon Enceladus, and liquid methane seas on another moon, Titan.
![]() Hull UK (SPX) Jul 04, 2017 A serendipitous detection of the organic molecule, methanol, around an intriguing moon of Saturn suggests that material spewed from Enceladus undertakes a complex chemical journey once vented into space. This is the first time that a molecule from Enceladus has been detected with a ground-based telescope. Dr. Emily Drabek-Maunder, of Cardiff University, will present the results on Tuesday 4th Ju ... read more Related Links Saturn at JPL Explore The Ring World of Saturn and her moons Jupiter and its Moons The million outer planets of a star called Sol News Flash at Mercury
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |