. 24/7 Space News .
MILITARY COMMUNICATIONS
SLAC develops novel compact antenna for communicating where radios fail
by Staff Writers
Menlo Park CA (SPX) Apr 16, 2019

A new compact antenna for very low frequency (VLF) transmissions, developed and tested at SLAC, consists of a 4-inch-long piezoelectric crystal (clear rod at center) that generates VLF radiation.

A new type of pocket-sized antenna, developed at the Department of Energy's SLAC National Accelerator Laboratory, could enable mobile communication in situations where conventional radios don't work, such as under water, through the ground and over very long distances through air.

The device emits very low frequency (VLF) radiation with wavelengths of tens to hundreds of miles. These waves travel long distances beyond the horizon and can penetrate environments that would block radio waves with shorter wavelengths. While today's most powerful VLF technology requires gigantic emitters, this antenna is only four inches tall, so it could potentially be used for tasks that demand high mobility, including rescue and defense missions.

"Our device is also hundreds of times more efficient and can transmit data faster than previous devices of comparable size," said SLAC's Mark Kemp, the project's principal investigator. "Its performance pushes the limits of what's technologically possible and puts portable VLF applications, like sending short text messages in challenging situations, within reach."

A sizable challenge
In modern telecommunications, radio waves transport information through air for radio broadcasts, radar and navigation systems and other applications. But shorter-wavelength radio waves have their limits: The signal they transmit becomes weak over very long distances, can't travel through water and is easily blocked by layers of rock.

In contrast, the longer wavelength of VLF radiation allows it to travel hundreds of feet through ground and water and thousands of miles beyond the horizon through air.

However, VLF technology also comes with major challenges. An antenna is most efficient when its size is comparable to the wavelength it emits; VLF's long wavelength requires enormous antenna arrays that stretch for miles. Smaller VLF transmitters are much less efficient and can weigh hundreds of pounds, limiting their intended use as mobile devices. Another challenge is the low bandwidth of VLF communication, which limits the amount of data it can transmit.

The new antenna was designed with these issues in mind. Its compact size could make it possible to build transmitters that weigh only a few pounds. In tests that sent signals from the transmitter to a receiver 100 feet away, the researchers demonstrated that their device produced VLF radiation 300 times more efficiently than previous compact antennas and transmitted data with almost 100 times greater bandwidth.

"There are many exciting potential applications for the technology," Kemp said. "Our device is optimized for long-range communication through air, and our research is looking at the fundamental science behind the method to find ways to further enhance its capabilities."

A mechanical antenna
To generate VLF radiation, the device exploits what is known as the piezoelectric effect, which converts mechanical stress to a buildup of electrical charge.

The researchers used a rod-shaped crystal of a piezoelectric material, lithium niobate, as their antenna. When they applied an oscillating electric voltage to the rod it vibrated, alternately shrinking and expanding, and this mechanical stress triggered an oscillating electric current whose electromagnetic energy then got emitted as VLF radiation.

The electric current stems from electric charges moving up and down the rod. In conventional antennas, these motions are close to the same size as the wavelength of the radiation they produce, and more compact designs typically require tuning units larger than the antenna itself. The new approach, on the other hand, "allows us to efficiently excite electromagnetic waves with wavelengths that are much larger than the motions along the crystal and without large tuners, which is why this antenna is so compact," Kemp said.

The researchers also found a clever way of tweaking the wavelength of the emitted radiation, he said: "We repeatedly switch the wavelength during operation, which allows us to transmit with a large bandwidth. This is key to achieving data transfer rates of more than 100 bits per second - enough to send a simple text."

The SLAC-led team reported their results in Nature Communications.

Research paper


Related Links
SLAC National Accelerator Laboratory
Read the latest in Military Space Communications Technology at SpaceWar.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


MILITARY COMMUNICATIONS
US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System
Germantown MD (SPX) Apr 04, 2019
Hughes Network Systems has been awarded a two-year Cooperative Research and Development Agreement (CRADA) by the U.S. Army for the third phase of the Blue Force Tracking (BFT-3) program. Under the agreement, Hughes and other industry participants will conduct research studies to deliver a series of recommendations for modernizing the BFT system architecture to improve interoperability and resiliency, as part of an Open System Architecture (OSA) consortium working to achieve more flexible network t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MILITARY COMMUNICATIONS
No nausea for Beth Moses, Virgin's space tourist trainer

Spinoff Book Highlights NASA Technology Everywhere

Three prototypes in space settlement challenge receive UAE support

Counting the Many Ways the International Space Station Benefits Humanity

MILITARY COMMUNICATIONS
Rocket fuel that's cleaner, safer and still full of energy

Russia Maintains High Quality of RD-180 Rocket Engines - ULA

Young entrepreneur aims to send 3D-printed rockets to space

Arianespace completes deployment of O3b constellation

MILITARY COMMUNICATIONS
ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

Tests for the InSight 'Mole'

MILITARY COMMUNICATIONS
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

MILITARY COMMUNICATIONS
Spacecraft Repo Operations

Forging the future

Preserving heritage data at ESA

Amazon working on internet-serving satellite network

MILITARY COMMUNICATIONS
Northrop Grumman awarded $3B for 24 Hawkeye early warning aircraft

Study shows potential for Earth-friendly plastic replacement

It's a one-way street for sound waves in this new technology

Spin lasers facilitate rapid data transfer

MILITARY COMMUNICATIONS
Oil-eating bacteria found at the bottom of the ocean

Biologists find world's first organism with non-photosynthesizing chlorophyll

Life Could Be Evolving Right Now on Nearest Exoplanets

NASA researchers catalogue all microbes and fungi on ISS

MILITARY COMMUNICATIONS
Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.