Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Rush a light wave and you'll break its data
by Staff Writers
Washington DC (SPX) Jun 02, 2014


File image.

Quantum information can't break the cosmic speed limit, according to researchers* from the National Institute of Standards and Technology (NIST) and the University of Maryland's Joint Quantum Institute.

The scientists have shown how attempts to "push" part of a light beam past the speed of light results in the loss of the quantum data the light carries. The results could clarify how noise might limit the transfer of information in quantum computers.

The speed of light in vacuum is often thought to be the ultimate speed limit, something Einstein showed to be an unbreakable law. But two years ago,** members of the research team found a sort of "loophole" in the law when they devised a new way to push part of the leading edge of a pulse of light a few nanoseconds faster than it would travel normally.

While the 'pulse front' (the initial part of the pulse) still traveled at the usual constant speed, the rising edge and the pulse peak could be nudged forward a bit. Since waves carry information, the team decided to explore what their previous results might mean for quantum information.

"How does the beam's quantum information behave if you try to speed up the leading edge?" says NIST's Ryan Glasser.

"We knew if you could speed the information up successfully, it would give rise to all kinds of causality problems, as you see in science fiction movies about people traveling back in time. So while no one expects it to be possible, just what prevents it from happening? That's what we wanted to know."

The team set up a new experiment that "entangled" the photons in two different light beams, which means that quantum information in one beam-such as amplitude-is strongly correlated to information in the other.

Ordinarily, measuring these parameters in one beam can reveal those in the second. But when the team nudged the waves in one beam forward and took their measurements, they found the correspondence with the second beam started to taper off, and the more they pushed, the more degraded with noise the signal became.

"We sped up the peak of the correlation between the two beams," Glasser says, "but we couldn't push the quantum information any faster than the speed of light in vacuum."

While further work is needed to determine what is fundamentally enforcing this information speed limit, the current findings could be useful for understanding information transfer within quantum systems such as those that will be needed within quantum computers.

"We speculate that quantum noise and distortion set that limit," Glasser says.

A more detailed explanation of the study is available here

* J.B. Clark, R.T. Glasser, Q. Glorieux, U. Vogl, T. Li, K.M. Jones and P.D. Lett. Quantum mutual information of an entangled state propagating through a fast-light medium. Nature Photonics. Published online May 25, 2014. DOI: 10.1038/nphoton.2014.112,

** See the May 2012 Tech Beat story, "First Light: NIST Researchers Develop New Way to Generate Superluminal Pulses"

.


Related Links
National Institute of Standards and Technology (NIST)
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Sending entangled beams through fast-light materials
College Park MD (SPX) May 27, 2014
Michael Lewis's bestselling book "Flash Boys" describes how some brokers, engaging in high frequency trading, exploit fast telecommunications to gain fraction-of-a-second advantage in the buying and selling of stocks. But you don't need to have billions of dollars riding on this-second securities transactions to appreciate the importance of fast signal processing. From internet to video streamin ... read more


STELLAR CHEMISTRY
NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

Water in moon rocks provides clues and questions about lunar history

NASA Invites Public to Select Favorite Moon Image for Lunar Orbiter Anniversary Collection

LRO View of Earth

STELLAR CHEMISTRY
New Mars Lander to Probe Interior of Red Planet

A habitable environment on Martian volcano

Mars Curiosity rover may have transported Earth bacteria to Mars

NASA Mars Weather Camera Helps Find New Crater on Red Planet

STELLAR CHEMISTRY
Smart lifestyle takes centre stage at Asia tech show

German village takes digital fate into own hands

Ecosystem Services: Looking Forward to Mid-Century

Virgin space flights cleared for US take-off

STELLAR CHEMISTRY
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

STELLAR CHEMISTRY
Russian Soyuz with New Crew Docks at ISS in Automatic Mode

Russian, German and US astronauts dock with ISS

Six-Person Station Crew Enjoys Day Off Following Docking

ESA astronaut Alexander Gerst arrives at ISS

STELLAR CHEMISTRY
Elon Musk to present manned DragonV2 spacecraft on May 29

Russia puts satellite in orbit from sea platform after 2013 flop

SpaceX Completes Qualification Testing of SuperDraco Thruster

After Injunction lifted, US rocket with Russian RD-180 Engine takes off

STELLAR CHEMISTRY
Why Does Earth Have No Super-Earth Cousins?

Astronomers identify signature of Earth-eating stars

Starshade Could Help Photograph Distant Planets

Giant telescope tackles orbit and size of exoplanet

STELLAR CHEMISTRY
Stronger than steel

Researchers predict electrical response of metals to extreme pressure

Pitt team first to detect exciton in metal

Lasers create table-top supernova




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.