![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Ann Arbor MI (SPX) Feb 14, 2019
In a finding that runs counter to a common assumption in physics, researchers at the University of Michigan ran a light emitting diode (LED) with electrodes reversed in order to cool another device mere nanometers away. The approach could lead to new solid-state cooling technology for future microprocessors, which will have so many transistors packed into a small space that current methods can't remove heat quickly enough. "We have demonstrated a second method for using photons to cool devices," said Pramod Reddy, who co-led the work with Edgar Meyhofer, both professors of mechanical engineering. The first - known in the field as laser cooling - is based on the foundational work of Arthur Ashkin, who shared the Nobel prize in Physics in 2018. The researchers instead harnessed the chemical potential of thermal radiation - a concept more commonly used to explain, for example, how a battery works. "Even today, many assume that the chemical potential of radiation is zero," Meyhofer said. "But theoretical work going back to the 1980s suggests that under some conditions, this is not the case." The chemical potential in a battery, for instance, drives an electric current when put into a device. Inside the battery, metal ions want to flow to the other side because they can get rid of some energy - chemical potential energy - and we use that energy as electricity. Electromagnetic radiation, including visible light and infrared thermal radiation, typically does not have this type of potential. "Usually for thermal radiation, the intensity only depends on temperature, but we actually have an additional knob to control this radiation, which makes the cooling we investigate possible," said Linxiao Zhu, a research fellow in mechanical engineering and the lead author on the work. That knob is electrical. In theory, reversing the positive and negative electrical connections on an infrared LED won't just stop it from emitting light, but will actually suppress the thermal radiation that it should be producing just because it's at room temperature. "The LED, with this reverse bias trick, behaves as if it were at a lower temperature," Reddy said. However, measuring this cooling - and proving that anything interesting happened - is hideously complicated. To get enough infrared light to flow from an object into the LED, the two would have to be extremely close together - less than a single wavelength of infrared light. This is necessary to take advantage of "near field" or "evanescent coupling" effects, which enable more infrared photons, or particles of light, to cross from the object to be cooled into the LED. Reddy and Meyhofer's team had a leg up because they had already been heating and cooling nanoscale devices, arranging them so that they were only a few tens of nanometers apart - or less than a thousandth of a hair's breadth. At this close proximity, a photon that would not have escaped the object to be cooled can pass into the LED, almost as if the gap between them did not exist. And the team had access to an ultra-low vibration laboratory where measurements of objects separated by nanometers become feasible because vibrations, such as those from footsteps by others in the building, are dramatically reduced. The group proved the principle by building a minuscule calorimeter, which is a device that measures changes in energy, and putting it next to a tiny LED about the size of a grain of rice. These two were constantly emitting and receiving thermal photons from each other and elsewhere in their environments. "Any object that is at room temperature is emitting light. A night vision camera is basically capturing the infrared light that is coming from a warm body," Meyhofer said. But once the LED is reverse biased, it began acting as a very low temperature object, absorbing photons from the calorimeter. At the same time, the gap prevents heat from traveling back into the calorimeter via conduction, resulting in a cooling effect. The team demonstrated cooling of 6 watts per meter squared. Theoretically, this effect could produce cooling equivalent to 1,000 watts per meter squared, or about the power of sunshine on Earth's surface. This could turn out to be important for future smartphones and other computers. With more computing power in smaller and smaller devices, removing the heat from the microprocessor is beginning to limit how much power can be squeezed into a given space. With improvements of the efficiency and cooling rates of this new approach, the team envisions this phenomenon as a way to quickly draw heat away from microprocessors in devices. It could even stand up to the abuses endured by smartphones, as nanoscale spacers could provide the separation between microprocessor and LED. The research is to be published in the journal Nature on Feb. 14, 2019, titled, "Near-field photonic cooling through control of the chemical potential of photons."
![]() ![]() Boosting solid state chemical reactions Sapporo, Japan (SPX) Feb 12, 2019 Adding olefin enables efficient solvent-free cross-coupling reactions, leading to environmentally friendly syntheses of a wide range of organic materials. A cross coupling reaction is typically performed in an organic solvent and leads to the production of a large amount of solvent waste, which is often harmful to the environment. A new strategy developed by Hokkaido University researchers in Japan opens the door for more environmentally friendly solvent-free solid-state cross coupling proce ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |