|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Washington DC (SPX) Jun 21, 2012
When you hear the word "robot," you might think of Hollywood creations such as the Terminator, C-3PO or Megatron. Thankfully, the reality of current robotics isn't quite that sinister, emotional or out for world domination. In fact, robots are primarily designed to help us, whether they are performing dangerous or difficult tasks, repetitive labor or just making life easier (think: self-vacuuming robot). Although they can't "think" for themselves in a literal sense, they can be very intuitive and self-sufficient, relying on their components to figure out what do to next, and the more advanced robotics technologies become, the "smarter" they will continue to get.
What IS a Robot? The term "robot" originated in 1921, derived from the Czech word "robota," meaning forced labor or work. While experts differ on the exact definition and classification, a robot is generally agreed upon as something that can sense its surroundings, plan and decide what action to take and then take that action. They can function in a variety of ways, from human-controlled to autonomous or a combination of both. "For some people, a robot could be a mechanism that looks like it is performing complex operations," said McQuin. "However, for me, a robot is a smart, reprogrammable mechanism, able to interact with its environment. The key part is, not only is a robot a physical mechanism that can do something, it also contains a computer that can control and adapt how it operates, whether it is controlled remotely by a human or it autonomously responds to its environment." Robots operate with a set of basic components: sensors, effectors, power sources and a communication method. Sensors gather information that orient the robot and allow it to decide what to do next. These can be any number of devices varying in sophistication, including cameras, GPS, lasers, sonar, radar, bump panels and touch sensors. Once data is collected, effectors allow it to move, interact and perform tasks. Effectors such as arms and grippers can allow the robot to manipulate its environment, while others such as wheels, tracks and legs allow movement. Power sources, like motors or hydraulics, keep the robot in action, and communication systems, such as a wireless connection to a user-operated computer, relay information. "A mentor of mine - and one of the founders of the field - likes to say that a robot is 'a computer-controlled mechanism that can destroy itself,'" said NASA Jet Propulsion Laboratory technical staff member Jaret Matthews, who works in the Robotic Vehicles Group. "Fundamentally, modern dishwashers, microwaves, etc., all have motors, sensors, computers, software - things that most people associate with robots. However, most people would not call a microwave a robot. A machine that has the strength, mobility, degrees of freedom and sophistication such that if software were to go haywire, it would result in self-destruction - that is what separates a robot from a microwave."
Robots Matter "Three words - self-driving cars," said Matthews. "Someday, we will be driven around safely, quickly and most importantly, efficiently by self-driving cars. They were just made legal in Nevada, and Google has already driven hundreds of thousands of miles with no hands on the wheel. "Traffic jams and stop lights will soon be a thing of the past. Cars will each communicate with each other to regulate their speed and glide safely through intersections without stopping. This will eliminate the dirty and inefficient use of fuel sitting idle at red lights or in traffic. We will save time, money and help reduce the amount of carbon dioxide being released into the air by idling tailpipes," he said. Beyond everyday tasks, McQuin said robots are also pushing our own boundaries of what and where we can explore. "Robots have explored the depths of the oceans and the surfaces of other planets and moons, furthering our understanding of our own planet and universe," he said.
Staying Ahead of the Game The main reason programs such as Centennial Challenges exist is to engage the public to develop advanced technology solutions that will benefit both NASA and the nation. Like the Wright Brothers, after whose centennial flight anniversary the competition is named, some of the most important and useful innovations have come from inquisitive people with ideas on how to make things better. The inventions and knowledge that arise from events such as the Sample Return Robot challenge can lay the groundwork for future technology. Many NASA technologies and projects have spun off into products and ideas that benefit society every day. NASA satellites warn us of impending severe weather and other disasters. Cochlear implants, the computer mouse and water filters have all either come about because of, or were spawned from, NASA ideas and developments that originated in another form. "A challenge like this is interesting and could lead to many benefits to society," said McQuin. "For instance, the same technology that allows the robots to autonomously navigate a landscape could be used by industry or government to remotely inspect the outside of remote infrastructure such as pipelines, power lines, etc. The ability to identify and collect a relevant sample could be applied to some mining or scientific operations here on Earth as well as on another planet."
The Future of Robotics Matthews agreed, "Pushing robotic technology will ensure that robots will have an increasingly important impact in all of our lives as they help to solve a myriad of the world's most pressing problems."
Related Links Sample Return Robot Program All about the robots on Earth and beyond!
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |