. | . |
Retreat of the ice followed by millennia of methane release by Staff Writers Oslo, Norway (SPX) May 17, 2016
Scientists have calculated that the present day ice sheets keep vast amounts of climate gas methane in check. Ice sheets are heavy and cold, providing pressure and temperatures that contain methane in form of ice-like substance called gas hydrate. If the ice sheets retreat the weight of the ice will be lifted from the ocean floor, the gas hydrates will be destabilised and the methane will be released. Studies conducted at CAGE have previously shown that ice sheets and methane hydrates are closely connected, and that release of methane from the seafloor has followed the retreat of the Barents Sea ice sheet some 20 000 years ago. But is all such release of the potent climate gas bound to be catastrophic? Not necessarily, according to a new study published in Nature Communications. It shows that the methane was indeed released as the ice sheets retreated. However the seepage did not occur in one major pulse, but over a period of 7000 to 10000 years following the initial release. "The release was too slow to significantly impact the concentration of methane in the atmosphere." says researcher and project leader Aivo Lepland at Norwegian geological Survey (NGU) and CAGE.This may help explain why we have yet to discover a signal for such events in the various climate records of the past.
Radioactive material tells time "We have used carbonate crusts that form just below the sea-floor. They are a direct result of the oxidation of methane moving upwards though the sediment layers from deeper reservoirs. The chemical composition of the crust tells us that the source fluid was methane-rich, and the uranium-thorium dating tells us when this methane release happened." explains lead author of the study Antoine Cremiere, post.doc at NGU/CAGE. Knowledge of the timescales of gas hydrate dissociation and subsequent methane release are critical in understanding the impact of marine gas hydrates on the ocean-atmosphere system, says Shyam Chand, researcher at NGU/CAGE. Paper reference: Cremiere et. al. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nature Communications 7, May 2016.
Related Links Center for Arctic Gas Hydrate, Climate and Environment Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |