![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers New Haven CT (SPX) Oct 26, 2017
Make way for some new memsistors. For years, the computer industry has sought memory technologies with higher endurance, lower cost, and better energy efficiency than commercial flash memories. Now, an international collaboration of scientists may have solved many of those challenges with the discovery of thin, molecular films that can store information. Scientists at Yale, the National University of Singapore (NUS), and the Indian Association for the Cultivation of Science (IACS) have produced new "memsistor" devices that last for 1 trillion cycles - far outstripping the endurance of commercial flash memories for computing. A memsistor is an electrical resistor component with memory; it can regulate the electrical current in a circuit, while remembering the level of charge that goes through it. The discovery is described in a study published Oct. 23 in the online edition of the journal Nature Materials. "These devices show great potential for applications in computing, especially in neuromorphic and logic circuits," said Yale chemistry professor Victor Batista, a co-author of the study and leader of a research group that included Yale graduate student Adam Matula and Yale postdoctoral student Svante Hedstrom. "The molecular-level understanding of these devices that we have helped generate is unprecedented in a memory device, and this allows us to create design principles for the next generation of devices." Neuromorphic computing attempts to simulate the architecture of the human brain. It involves systems with electronic analog circuitry that mimics neural structures in the central nervous system. Considerable research already has gone into resistive memory devices, particularly those made with inorganic materials. Devices using organic materials were thought to be too inconsistent and unstable for commercial use. But the new memsistors created by Batista and his colleagues feature a layer of organic, complex metal that may offer an option that is durable and less expensive to manufacture. Batista said that while the discovery has great potential, additional research must be done to understand more about the information-storing properties of the new memsistors. "The most surprising part in this is how a molecular film, grown without much outside control, can get almost all of its molecules switched on and off repeatedly over trillions of cycles," he said. "Even if we scale this down to the nanometer regime, the phenomenon is still consistent. These molecules are like electron sponges and what we still don't understand is how the electrical charges are being balanced."
![]() Boston MA (SPX) Oct 18, 2017 Optical frequency combs are widely-used, high-precision tools for measuring and detecting different frequencies - a.k.a. colors - of light. Unlike conventional lasers, which emit a single frequency, these lasers emit multiple frequencies simultaneously. The equally spaced frequencies resemble the teeth of a comb. Optical frequency combs are used for everything from measuring the fingerprints of ... read more Related Links Yale University Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |