Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
Researchers warn against abrupt stop to geoengineering method
by Staff Writers
London, UK (SPX) Feb 24, 2014


File image.

As a range of climate change mitigation scenarios are discussed, University of Washington researchers have found that the injection of sulfate particles into the atmosphere to reflect sunlight and curb the effects of global warming could pose a severe threat if not maintained indefinitely and supported by strict reductions in greenhouse gas (GHG) emissions.

The new study, published today, 18 February, in IOP Publishing's journal Environmental Research Letters, has highlighted the risks of large and spatially expansive temperature increases if solar radiation management (SRM) is abruptly stopped once it has been implemented.

SRM is a proposed method of geoengineering whereby tiny sulfate-based aerosols are released into the upper atmosphere to reflect sunlight and cool the planet. The technique has been shown to be economically and technically feasible; however, its efficacy depends on its continued maintenance, without interruption from technical faults, global cooperation breakdown or funding running dry.

According to the study, global temperature increases could more than double if SRM is implemented for a multi-decadal period of time and then suddenly stopped, in relation to the temperature increases expected if SRM was not implemented at all.

The researchers used a global climate model to show that if an extreme emissions pathway-RCP8.5-is followed up until 2035, allowing temperatures to rise 1C above the 1970-1999 mean, and then SRM is implemented for 25 years and suddenly stopped, global temperatures could increase by 4C in the following decades.

This rate of increase, caused by the build-up of background greenhouse gas emissions, would be well beyond the bounds experienced in the last century and more than double the 2C temperature increase that would occur in the same timeframe if SRM had not been implemented.

On a regional and seasonal scale, the temperature changes would be largest in an absolute sense in winter over high latitude land, but compared to historical fluctuations, temperature changes would be largest in the tropics in summertime, where there is usually very little variation.

Lead author of the research, Kelly McCusker, from the University of Washington, said: "According to our simulations, tropical regions like South Asia and Sub-Saharan Africa are hit particularly hard, the very same regions that are home to many of the world's most food insecure populations. The potential temperature changes also pose a severe threat to biodiversity."

Furthermore, the researchers used a simple climate model to study a variety of plausible greenhouse gas scenarios and SRM termination years over the 21st century. They showed that climate sensitivity-a measure of how much the climate will warm in response to the greenhouse effect-had a lesser impact on the rate of temperature changes.

Instead, they found that the rates of temperature change were determined by the amount of GHG emissions and the duration of time that SRM is deployed.

"The primary control over the magnitude of the large temperature increases after an SRM shutoff is the background greenhouse gas concentrations. Thus, the greater the future emissions of greenhouse gases, the larger the temperature increases would be, and, similarly, the later the termination occurs while GHG emissions continue, the larger the temperature increases," continued McCusker.

"The only way to avoid creating the risk of substantial temperature increases through SRM, therefore, is concurrent strong reductions of GHG emissions."

This paper can be downloaded here

.


Related Links
Institute of Physics
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Finding common ground fosters understanding of climate change
East Lansing MI (SPX) Feb 18, 2014
Grasping the concept of climate change and its impact on the environment can be difficult. Establishing common ground and using models, however, can break down barriers and present the concept in an easily understood manner. In a presentation at this year's meeting of the American Association for the Advancement of Science, Michigan State University systems ecologist and modeler Laura Schm ... read more


CLIMATE SCIENCE
Is Yutu Stuck?

Japan's Pocari Sweat bound for the moon: maker

Lunar ownership laws: a future necessity?

Chang'e-2 lunar probe travels 70 mln km

CLIMATE SCIENCE
NASA Mars Orbiter Views Opportunity Rover on Ridge

Curiosity Adds Reverse Driving for Wheel Protection

Curiosity Drives On After Crossing Martian Dune

The World Above and Beyond

CLIMATE SCIENCE
Orion Underway Recovery Testing Begins off the Coast of California

Inside astronaut Alexander's head

NASA Welcomes University Participants to Develop Science Payloads

Boeing Commercial Crew Program Passes NASA Hardware, Software Reviews

CLIMATE SCIENCE
No Call for Yutu

What's up, Yutu

China's Jade Rabbit rover comes 'back to life'

Yutu Awakes

CLIMATE SCIENCE
NASA, International Space Station Partners Announce Future Crew Members

Andrews Space Cargo Module Power Unit Provides Power For Payloads Bound For ISS

Russian Progress M-22M docks with ISS following fast rendezvous

Russian Resupply Spacecraft Begins Expedited Flight to Station

CLIMATE SCIENCE
Arianespace to launch OPTSAT 3000 and VENuS satellites

Lighter engines a headache for satellite launcher Ariane

New Russian Rocket Mock-Up Rolls Out to Launch Pad

ILS Proton Successfully Launches TURKSAT-4A for Turksat

CLIMATE SCIENCE
ESA selects planet-hunting PLATO mission

Rife with hype, exoplanet study needs patience and refinement

Scientist: Exoplanet research needs less hype, more patience

Europe sets plans for 2024 planet-hunting mission

CLIMATE SCIENCE
Lagos gets on its bike with recycling 'loyalty' scheme

How to catch a satellite

Using Holograms to Improve Electronic Devices

Google shows prototype phone that creates 3-D maps of its surroundings




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.