. 24/7 Space News .
CHIP TECH
Researchers illuminate the path to a new era of microelectronics
by Staff Writers
Boston MA (SPX) Apr 24, 2018

illustration only

A new microchip technology capable of optically transferring data could solve a severe bottleneck in current devices by speeding data transfer and reducing energy consumption by orders of magnitude, according to an article published in the April 19, 2018 issue of Nature.

Researchers from Boston University, Massachusetts Institute of Technology, the University of California Berkeley and University of Colorado Boulder have developed a method to fabricate silicon chips that can communicate with light and are no more expensive than current chip technology.

The result is the culmination of a several-year-long project funded by the Defense Advanced Research Project Agency that was a close collaboration between teams led by Associate Professor Vladimir Stojanovic of UC Berkeley, Professor Rajeev Ram of MIT, and Assistant Professor Milos Popovic from Boston University and previously CU Boulder. They collaborated with a semiconductor manufacturing research team at the Colleges of Nanoscale Science and Engineering (CNSE) of the State University of New York at Albany.

The electrical signaling bottleneck between current microelectronic chips has left light communication as one of the only options left for further technological progress. The traditional method of data transfer-electrical wires-has a limit on how fast and how far it can transfer data. It also uses a lot of power and generates heat.

With the relentless demand for higher performance and lower power in electronics, these limits have been reached. But with this new development, that bottleneck can be solved.

"Instead of a single wire carrying 10 to 100 gigabits per second, you can have a single optical fiber carrying 10 to 20 terabits per second - so about a thousand times more in the same footprint," says Popovic.

"If you replace a wire with an optical fiber, there are two ways you win," he says.

"First, with light, you can send data at much higher frequencies without significant loss of energy as there is with copper wiring. Second, with optics, you can use many different colors of light in one fiber and each one can carry a data channel. The fibers can also be packed more closely together than copper wires can without crosstalk."

In the past, progress to integrate a photonic capability onto state-of-the-art chips that are used in computers and smartphones was hindered by a manufacturing roadblock. Modern processors are enabled by highly developed industrial semiconductor manufacturing processes capable of stamping out a billion transistors that work together on one chip.

But these manufacturing processes are finely tuned and designing an approach to include optical devices on chips while keeping the current electrical capabilities intact proved difficult.

The first major success in overcoming this roadblock was in 2015 when the same group of researchers published another paper in Nature that solved this problem, but did so in a limited commercially relevant setting.

The paper demonstrated the world's first microprocessor with a photonic data transfer capability and the approach to manufacturing it without changing the original manufacturing process-a concept the researchers have termed a zero-change technology. Ayar Labs, Inc., a startup that Ram, Popovic and Stojanovic co-founded, has recently partnered with major semiconductor industry manufacturer GlobalFoundries to commercialize this technology.

However, this previous approach was applicable to a small fraction of state-of-the-art microelectronic chips that did not include the most prevalent kind, which use a starting material referred to as bulk silicon.

In the new paper, the researchers present a manufacturing solution applicable to even the most commercially widespread chips based on bulk silicon, by introducing a set of new material layers in the photonic processing portion of the silicon chip.

They demonstrate that this change allows optical communication with no negative impact on electronics. By working with state-of-the-art semiconductor manufacturing researchers at CNSE Albany to develop this solution, the scientists ensured that any process that was developed could be seamlessly inserted into current industry-level manufacturing.

"By carefully investigating and optimizing the properties of the additional material layers for photonic devices, we managed to demonstrate state-of-the-art system-level performance in terms of bandwidth density and energy consumption while starting from a much less expensive process compared to competing technologies," says Fabio Pavanello, a former postdoctoral associate from Popovic's research group who is a co-first author of the paper with both Amir Atabaki, a research scientist at MIT, and Sajjad Moazeni, a graduate student at UC Berkeley.

"It took a major collaboration over several years by our three groups across different disciplines to achieve this result," adds Atabaki.

The new platform, which brings photonics to state-of-the-art bulk silicon microelectronic chips, promises faster and more energy efficient communication that could vastly improve computing and mobile devices.

Applications beyond traditional data communication include accelerating the training of deep-learning artificial neural networks used in image and speech recognition tasks, and low-cost infrared LIDAR sensors for self-driving cars, smartphone face identification and augmented reality technology.

In addition, optically enabled microchips could enable new types of data security and hardware authentication, more powerful chips for mobile devices operating on 5th generation (5G) wireless networks, and components for quantum information processing and computing.

"For the most advanced current state-of-the-art and future semiconductor manufacturing technologies with electronic transistor dimensions below 20nm, there is no other way to integrate photonics than this approach.", concluded Vladimir Stojanovic, whose team led some of the work, "All of the material layers used to form transistors become too thin to support photonics, so the additional layers are needed."

Research paper


Related Links
Boston University College of Engineering
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Integrating optical components into existing chip designs
Boston MA (SPX) Apr 20, 2018
Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing manufacturing processes, that integrated electronic and optical components on the same chip. The researchers' approach, however, required that the chip's electrical components be built from the same layer of silicon as its optical components. That meant relying on an older ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Cosmonautics demonstrates how US, Russia should work together

NASA's New Space 'Botanist' Arrives at Launch Site

Philippines to deploy riot police for Boracay tourist closure

Top tomatoes thanks to Mars missions

CHIP TECH
Lockheed awarded $928M for hypersonic strike weapon

ULA Atlas V launch to feature full complement of Aerojet Rocketdyne solid rocket boosters

RL10 Selected for OmegA Rocket

ISRO not facing funds crunch: Chairman K.Sivan

CHIP TECH
SwRI's Martian moons model indicates formation following large impact

US, Russia likely to go to Mars Together, former NASA astronaut says

NASA scientist to discuss 'Swimming in Martian Lakes: Curiosity at Gale Crater'

Trace Gas Orbiter reaches stable Mars orbit, ready to start science mission

CHIP TECH
The Long Game: China Seeks to Transfer Its Silk Industry to Far Side of the Moon

China to launch Long March-5 Y3 rocket in late 2018

Flowers on the Moon? China's Chang'e-4 to launch lunar spring

China's 'space dream': A Long March to the moon

CHIP TECH
Airbus has shipped SES-12 highly innovative satellite to launch base

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

CHIP TECH
Invertebrates inspire first fully 3-D printed active materials for robots

Study recommends strong role for national labs in 'second laser revolution'

Rare earth magnet recycling is a grind - this new process takes a simpler approach

Artificial intelligence accelerates discovery of metallic glass

CHIP TECH
Are we alone? NASA's new planet hunter aims to find out

We think we're the first advanced earthlings - but how do we really know?

Newly discovered salty subglacial lakes could help search for life in solar system

SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

CHIP TECH
Pluto's Largest Moon, Charon, Gets Its First Official Feature Names

Pluto's largest moon, Charon, gets its first official feature names

Juno Provides Infrared Tour of Jupiter's North Pole

SSL to provide of critical capabilities for Europa Flyby Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.