Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Researchers find weird magic ingredient for quantum computing
by Staff Writers
Waterloo, Canada (SPX) Jun 16, 2014


This geometric figure illustrates the concept of magic states and their relation to contextuality. The triangular region contains quantum states that are not magic and do not exhibit contextuality. States outside the triangle do exhibit contextuality and may be useful as a resource in the magic-state model of quantum computing. Image courtesy University of Waterloo.

A form of quantum weirdness is a key ingredient for building quantum computers according to new research from a team at the University of Waterloo's Institute for Quantum Computing (IQC). In a new study published in the journal Nature, researchers have shown that a weird aspect of quantum theory called contextuality is a necessary resource to achieve the so-called magic required for universal quantum computation.

One major hurdle in harnessing the power of a universal quantum computer is finding practical ways to control fragile quantum states. Working towards this goal, IQC researchers Joseph Emerson, Mark Howard and Joel Wallman have confirmed theoretically that contextuality is a necessary resource required for achieving the advantages of quantum computation.

"Before these results, we didn't necessarily know what resources were needed for a physical device to achieve the advantage of quantum information. Now we know one," said Mark Howard, a postdoctoral fellow at IQC and the lead author of the paper.

"As researchers work to build a universal quantum computer, understanding the minimum physical resources required is an important step to finding ways to harness the power of the quantum world."

Quantum devices are extremely difficult to build because they must operate in an environment that is noise-resistant. The term magic refers to a particular approach to building noise-resistant quantum computers known as magic-state distillation. So-called magic states act as a crucial, but difficult to achieve and maintain, extra ingredient that boosts the power of a quantum device to achieve the improved processing power of a universal quantum computer.

By identifying these magic states as contextual, researchers will be able to clarify the trade-offs involved in different approaches to building quantum devices. The results of the study may also help design new algorithms that exploit the special properties of these magic states more fully.

"These new results give us a deeper understanding of the nature of quantum computation. They also clarify the practical requirements for designing a realistic quantum computer," said Joseph Emerson, professor of Applied Mathematics and Canadian Institute for Advanced Research fellow.

"I expect the results will help both theorists and experimentalists find more efficient methods to overcome the limitations imposed by unavoidable sources of noise and other errors."

Contextuality was first recognized as a feature of quantum theory almost 50 years ago. The theory showed that it was impossible to explain measurements on quantum systems in the same way as classical systems.

In the classical world, measurements simply reveal properties that the system had, such as colour, prior to the measurement. In the quantum world, the property that you discover through measurement is not the property that the system actually had prior to the measurement process. What you observe necessarily depends on how you carried out the observation.

Imagine turning over a playing card. It will be either a red suit or a black suit - a two-outcome measurement. Now imagine nine playing cards laid out in a grid with three rows and three columns.

Quantum mechanics predicts something that seems contradictory - there must be an even number of red cards in every row and an odd number of red cards in every column. Try to draw a grid that obeys these rules and you will find it impossible. It's because quantum measurements cannot be interpreted as merely revealing a pre-existing property in the same way that flipping a card reveals a red or black suit.

Measurement outcomes depend on all the other measurements that are performed - the full context of the experiment.

Contextuality means that quantum measurements can not be thought of as simply revealing some pre-existing properties of the system under study. That's part of the weirdness of quantum mechanics.

.


Related Links
University of Waterloo
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
2D Transistors Promise a Faster Electronics Future
Berkeley CA (SPX) Jun 10, 2014
Faster electronic device architectures are in the offing with the unveiling of the world's first fully two-dimensional field-effect transistor (FET) by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab). Unlike conventional FETs made from silicon, these 2D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a mono ... read more


CHIP TECH
Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

NASA Missions Let Scientists See Moon's Dancing Tide From Orbit

CHIP TECH
Discovery of Earth's Northernmost Perennial Spring

US Congress and Obama administration face obstacles in Mars 2030 project

Opportunity Recovering From Flash Memory Problems

Rover Corrects its Spacecraft Clock

CHIP TECH
Coffee for cosmonauts! First 'ISSpresso' machine to arrive in space

Complexity of Sample Return Robot Competition Challenges 17 Teams

Wealthy Chinese buy space flight tickets: report

Boeing reveals prototype spacecraft for human transport

CHIP TECH
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

CHIP TECH
US expects to continue partnership with Russia on ISS after 2020

Station Crew Wraps Up Week With Medical Research

Decontamination System to Up Research on Space Station

D-Day for the International Space Station

CHIP TECH
Nasa readies satellite to measure atmospheric CO2

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

US not able yet to remove dependency on Russian rocket motors

CHIP TECH
Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

First light for SPHERE exoplanet imager

CHIP TECH
NASA's abandoned ISEE-3 craft to return to Earth's orbit

Breakthrough for information technology using Heusler materials

PlayStation lets Sony grab for home entertainment crown

3D printer cleared for lift-off to ISS in August




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.