Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Researchers discover a new way fish camouflage themselves in the ocean
by Staff Writers
Austin TX (SPX) Jun 13, 2013


Researchers found that lookdown fish camouflage themselves through a complex manipulation of polarized light after it strikes the fish skin. This kind of camouflage outperforms by up to 80 percent the "mirror" strategy that was previously thought to be state-of-the-art in fish camouflage. Credit: By Jeff Kubina.

Fish can hide in the open ocean by manipulating how light reflects off their skin, according to researchers at The University of Texas at Austin. The discovery could someday lead to the development of new camouflage materials for use in the ocean, and it overturns 40 years of conventional wisdom about fish camouflage.

The researchers found that lookdown fish camouflage themselves through a complex manipulation of polarized light after it strikes the fishes' skin. In laboratory studies, they showed that this kind of camouflage outperforms by up to 80 percent the "mirror" strategy that was previously thought to be state-of-the-art in fish camouflage.

The study was published this month in the Proceedings of the National Academy of Sciences (PNAS). The research was funded by the U.S. Navy, which has an interest both in developing better ocean camouflage technologies and in being able to detect such strategies if developed by others.

"The open ocean represents a challenging environment for camouflage," said Molly Cummings, associate professor of integrative biology in the College of Natural Sciences. "There are no objects to hide behind in three-dimensional space, so organisms have to find a way to blend in to the water itself."

For the past few decades the assumption has been that the optimal camouflage strategy for open ocean fish is to reflect sunlight like a mirror. Many fish, including the lookdown, have reflective skin elements that can act like mirrors.

Such a strategy works well for certain aspects of light, such as color and intensity, which tend to be distributed homogenously in the region surrounding the fish. The mirror strategy is not optimal, however, when light is polarized, which occurs when individual waves of light align parallel to one another.

"In the polarized light field, there is a lot of structure in the open ocean," said physicist Parrish Brady, a postdoctoral associate in Cummings' lab. "Humans can't see it, but more than 60 different species of fish have some degree of polarization sensitivity. They can perceive the structure in the light."

The contours of the polarized light field in the open ocean environment are constantly changing except at noon, when the sun is directly overhead. A fish needs to do more than deploy the straight mirror strategy in order to stay camouflaged. Cummings hypothesized that perhaps nature had evolved a strategy to do just that.

She and Brady caught some lookdowns, which are known as good camouflagers. In tanks in the lab, they simulated the sun passing over the ocean during the course of a day, and they used a custom-built polarimeter to measure how the lookdowns reflected the polarized light.

They found that the lookdowns were able to manipulate their reflective properties in ways that were close to the theoretical optimum and far better than a standard mirror.

"The nifty thing is when we mimicked the light field when the sun is overhead, as it would be at noon, the fish just bounced back that light field," said Cummings. "It acted like a mirror. Then we mimicked the light field when it's more complex, and the lookdown altered the properties of the polarized light it was reflecting so that it would be a better blend into its specific background at different times of day."

The lookdown's "polaro-cryptic" mirror skin functions by selectively reducing the degree of polarization and transforming the angle of polarization of the reflected light depending on the conditions.

The researchers' next task is to understand how the fish are accomplishing this feat.

Cummings said it might be an entirely passive process, with different elements of their skin automatically responding to the angle of the sunlight. Or, the lookdowns may aid in their camouflage by subtly altering their bodies' orientation relative to the sun, or by neurologically ramping up certain processes.

What the researchers discover about these mechanisms will be of particular interest to the Navy, which at present isn't as good as lookdowns at open ocean camouflage.

"From an evolutionary biologist viewpoint, I am always excited when evolution is one step ahead of humans," said Cummings. "There is this problem out there - how to blend in to this environment, and though we haven't quite solved it yet, an animal has. We can identify these basic biological strategies, and perhaps materials scientists can then translate them into useful products for society."

.


Related Links
University of Texas at Austin
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Chagos Islanders lose UK marine park challenge
London (AFP) June 11, 2013
Exiled Indian Ocean islanders on Tuesday lost a British court challenge launched to prevent Britain from setting up a marine park they suspect is aimed at stopping them from ever returning. Former residents of the Chagos Islands archipelago in British Indian Ocean Territory say the move to establish a marine protected area (MPA) - which involves a ban on commercial fishing - would effectiv ... read more


WATER WORLD
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

WATER WORLD
Mars Water-Ice Clouds Are Key to Odd Thermal Rhythm

Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

WATER WORLD
The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

WATER WORLD
China astronauts enter space module

China to send second woman into space: officials

Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

WATER WORLD
Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

WATER WORLD
Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

WATER WORLD
Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

WATER WORLD
NSBRI Industry Forum Launches Grant Opportunity To Drive Spaceflight Product Development

Filmmaking magic with polymers

Chilean, U.S. firms join effort to expand e-waste recycling

Space Debris - One Solution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement