|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Washington DC (SPX) Jun 04, 2013
Using the sensitive ears of a parasitic fly for inspiration, a group of researchers has created a new type of microphone that achieves better acoustical performance than what is currently available in hearing aids. The scientists will present their results at the 21st International Congress on Acoustics, held June 2-7 in Montreal. Ronald Miles, Distinguished Professor of Mechanical Engineering at Binghamton University, studies the hearing of Ormia ochracea, a house fly-sized insect that is native to the southeast United States and Central America. Unlike most other flies, Ormia ochracea has eardrums that sense sound pressure, as do our ears, and they can hear "quite well," says Miles. The female flies use their "remarkable" directional hearing to locate singing male crickets, on which they deposit their larvae. Previously, Miles and colleagues Daniel Robert and Ronald Hoy described the mechanism by which the fly achieves its directional hearing, despite its small size. Now Miles and his group have designed a new microphone inspired by the fly's ears. The new design uses a microelectromechanical microphone with a 1 mm by 3 mm diaphragm that is designed to rotate about a central pivot in response to sound pressure gradients. The motion of the diaphragm is detected using optical sensors. To minimize the adverse effects of resonances on the response, Miles and his colleagues used a feedback system to achieve so-called active Q control. "Q control basically is an electronic feedback control system to introduce electronic damping," Miles explains. "You don't want a microphone diaphragm to ring like a bell. It turns out that in order to achieve a very low noise floor - which is the quietest sound that can be detected without the signal being buried in the microphone's noise - it is important to minimize any passive damping in these sensors. "If you do that, the diaphragm will resonate at its natural frequency. We are the first group to show that you can use this sort of electronic damping in a microphone without adversely affecting the noise floor of the microphone." Indeed, the noise floor of the fly-inspired microphone is about 17 decibels lower than what can be achieved using a pair of low-noise hearing aid microphones to create a directional hearing aid. The new design could be used in applications ranging from hearing aids and cell phones to surveillance and acoustic noise control systems, Miles says, and "could easily be made as small as the fly's ear." The presentation 2aEA1, "A biologically inspired silicon differential microphone with active Q control and optical sensing," is in the morning session of Tuesday, June 4. Abstract:
Related Links American Institute of Physics All about the robots on Earth and beyond!
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |