Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Researchers create 'soft robotic' devices using water-based gels
by Staff Writers
Raleigh NC (SPX) Aug 07, 2013


Researchers have created a hydrogel "grabber" that can grasp and release objects. Credit: Orlin Velev.

Researchers from North Carolina State University have developed a new technique for creating devices out of a water-based hydrogel material that can be patterned, folded and used to manipulate objects. The technique holds promise for use in "soft robotics" and biomedical applications.

"This work brings us one step closer to developing new soft robotics technologies that mimic biological systems and can work in aqueous environments," says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the work.

"In the nearer term, the technique may have applications for drug delivery or tissue scaffolding and directing cell growth in three dimensions, for example," says Dr. Orlin Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State, the second senior author of the paper.

The technique they've developed uses hydrogels, which are water-based gels composed of water and a small fraction of polymer molecules. Hydrogels are elastic, translucent and - in theory - biocompatible. The researchers found a way to modify and pattern sections of hydrogel electrically by using a copper electrode to inject positively charged copper ions into the material.

Those ions bond with negatively charged sites on the polymer network in the hydrogel, essentially linking the polymer molecules to each other and making the material stiffer and more resilient. The researchers can target specific areas with the electrodes to create a framework of stiffened material within the hydrogel. The resulting patterns of ions are stable for months in water.

"The bonds between the biopolymer molecules and the copper ions also pull the molecular strands closer together, causing the hydrogel to bend or flex," Velev says. "And the more copper ions we inject into the hydrogel by flowing current through the electrodes, the further it bends."

The researchers were able to take advantage of the increased stiffness and bending behavior in patterned sections to make the hydrogel manipulate objects. For example, the researchers created a V-shaped segment of hydrogel. When copper ions were injected into the bottom of the V, the hydrogel flexed - closing on an object as if the hydrogel were a pair of soft tweezers. By injecting ions into the back side of the hydrogel, the tweezers opened - releasing the object.

The researchers also created a chemically actuated "grabber" out of an X-shaped segment of hydrogel with a patterned framework on the back of the X. When the hydrogel was immersed in ethanol, the non-patterned hydrogel shrank. But because the patterned framework was stiffer than the surrounding hydrogel, the X closed like the petals of a flower, grasping an object. When the X-shaped structure was placed in water, the hydrogel expanded, allowing the "petals" to unfold and release the object.

"We are currently planning to use this technique to develop motile, biologically compatible microdevices," Velev says.

"It's also worth noting that this technique works with ions other than copper, such as calcium, which are biologically relevant," Dickey says.

The paper, "Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting," is published online in Nature Communications. Lead authors of the paper are Dr. Etienne Palleau, a former postdoctoral researcher at NC State, and Daniel Morales, a Ph.D. student at NC State. The work was supported by the National Science Foundation's Research Triangle Materials Research Science and Engineering Center and DS/DGA-France.

.


Related Links
North Carolina State University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Japan Delivers Hardware ISS Robotic Refueling Test
Greenbelt MD (SPX) Aug 06, 2013
It may be called the Robotic Refueling Mission (RRM), but NASA's RRM was built to demonstrate much more than the clever ways space robots can fill up satellites. With the launch of new hardware to the International Space Station on Aug. 3, RRM - recently named a "Top Exploration Technology Application From the International Space Station in 2012" - will be outfitted to practice a new set o ... read more


ROBO SPACE
NASA Selects Launch Services Contract for OSIRIS-REx Mission

Environmental Controls Move Beyond Earth

Bad night's sleep? The moon could be to blame

Moon Base and Beyond

ROBO SPACE
NASA launches new Russian-language Mars website

Big ice may explain Mars' double-layer craters

Full Curiosity Traverse Passes One-Mile Mark

Curious craters on Mars said result of impacts into ancient ice

ROBO SPACE
College of Law launches doctorate in space law

Study: Teleportation would have a slight time-to-transmit problem

NASA technologist makes traveling to hard-to-reach destinations easier

First Liquid Hydrogen Tank Barrel Segment for SLS Core Completed

ROBO SPACE
China launches three experimental satellites

Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

ROBO SPACE
Japanese Cargo Spacecraft Docks with ISS

NASA's Firestation on way to ISS

Weekly recap from the International Space Station expedition lead scientist

NSBRI Wants Ideas To Support Space Crew Health and Performance

ROBO SPACE
Next Ariane 5 is readied to receive its dual-satellite payload

Russia to restart Proton rocket launches after crash

Japanese rocket takes supplies, robot to space station

SpaceX Awarded Launch Reservation Contract for Largest Canadian Space Program

ROBO SPACE
Astronomers Image Lowest-mass Exoplanet Around a Sun-like Star

New Explorer Mission Chooses the 'Just-Right' Orbit

'Blinking' stellar system may yield clues to planet formation

Pulsating star sheds light on exoplanet

ROBO SPACE
New 'weird' material may be new class of solids, researchers say

Large Area Picosecond Photodetectors push timing envelope

Seeing depth through a single lens

Altering organic molecules' interaction with light




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement