Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Researchers Find Replacement For Rare Material Indium Tin Oxide
by Staff Writers
Eindhoven, Netherlands (SPX) Apr 13, 2011


4-point conductivity measurement of the new transparent conducting film developed by Professors Cor Koning (left) and Paul van der Schoot (right). The black pot contains a dispersion of carbon nanotubes in water, and the white pot contains the conducting latex. Credit: Photo: Bart van Overbeeke.

Researchers at Eindhoven University of Technology (TU/e, Netherlands) have developed a replacement for indium tin oxide (ITO), an important material used in displays for all kinds of everyday products such as TVs, telephones and laptops, as well as in solar cells. Unfortunately indium is a rare metal, and the available supplies are expected to be virtually exhausted within as little as ten years.

The replacement material is a transparent, conducting film produced in water, and based on electrically conducting carbon nanotubes and plastic nanoparticles. It is made of commonly available materials, and on top of that is also environment-friendly.

The results, which also provide new insights into conduction in complex composite materials, were published online yesterday 10 April by the scientific journal Nature Nanotechnology.

The research team has been able to achieve higher conductivity by combining low concentrations of carbon nanotubes and conducting latex in a low-cost polystyrene film. The nanotubes and the latex together account for less than 1 percent of the weight of the conducting film.

That is important, because a high concentration of carbon nanotubes makes the film black and opaque, so the concentration needs to be kept as low as possible. The research team was led by theoretical physicist Paul van der Schoot and polymer chemist Cor Koning. Post-doc Andriy Kyrylyuk is the first author of the paper in Nature Nanotechnology.

The researchers use standard, widely available nanotubes which they dissolve in water. Then they add conducting latex (a solution of polymer beads in water), together with a binder in the form of polystyrene beads. When the mixture is heated, the polystyrene beads fuse together to form the film, which contains a conducting network of nanotubes and beads from the conducting latex.

The water, which only serves as a dispersing agent in production, is removed by freeze-drying. The 'formula' is not a question of good luck, as the researchers first calculated the expected effects and also understand how the increased conductivity works.

The conductivity of the transparent e film is still a factor 100 lower than that of indium tin oxide. But Van der Schoot and Koning expect that the gap can quickly be closed. "We used standard carbon nanotubes, a mixture of metallic conducting and semiconducting tubes", says Cor Koning. "But as soon as you start to use 100 percent metallic tubes, the conductivity increases greatly.

The production technology for 100 percent metallic tubes has just been developed, and we expect the price to fall rapidly." However the conductivity of the film is already good enough to be used immediately as an antistatic layer for displays, or for EMI shielding to protect devices and their surroundings against electromagnetic radiation.

The film has an important advantage over ITO: it is environment-friendly. All the materials are water based, and no heavy metals such as tin are used. The new film is also a good material for flexible displays.

The researchers themselves are very positive about the diversity of their team, which they believe made an important contribution to the results.

"We had a unique combination of theoreticians, modeling specialists and people to do practical experiments", says Paul van der Schoot. "Without that combination we wouldn't have succeeded."

The paper ''Controlling Electrical Percolation in Multi-Component Carbon Nanotube Dispersions' was published yesterday, Sunday 10 april, on the website of the journal Nature Nanotechnology (DOI: 10.1038/NNANO.2011.40). The research forms part of the Functional Polymer Systems research program at the Dutch Polymer Institute (DPI), which provided financial support for this project. Prof. Cor Koning is with the Polymer Chemistry group (Department of Chemical Engineering and Chemistry) and prof. Paul van der Schoot is with the Theory of Polymers and Soft Matter group (Department of Applied Physics) of Eindhoven University of Technology. The other authors of the article are Andriy Kyrylyuk (first author), Marie Claire Hermant, Tanja Schilling and Bert Klumperman.

.


Related Links
Eindhoven University of Technology
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Can Plants Generate Magnetic Fields
Berkeley CA (SPX) Apr 11, 2011
Searching for magnetic fields produced by plants may sound as wacky as trying to prove the existence of telekinesis or extrasensory perception, but physicists at the University of California, Berkeley, are seriously looking for biomagnetism in plants using some of the most sensitive magnetic detectors available. In an article that appeared this week in the Journal of Applied Physics, the U ... read more


TECH SPACE
BRP To Contribute To Canadian Moon And Mars Exploration Programs

Naveen Jain Co-Founder And Chairman Of Moon Express

Project Morpheus To Begin Testing At NASA's Johnson Space Center

NASA Announces Winners Of 18th Annual Great Moonbuggy Race

TECH SPACE
Several Drives This Week Put Opportunity Over 17-Mile Mark

Next Mars Rover Nears Completion

Mars In Spain

Study Of 'Ruiz Garcia' Rock Completed

TECH SPACE
"I See Earth! It Is So Beautiful!"

Report Provides NASA With Direction For Next 10 Years Of Space Research

Last legends of early space flight laud Gagarin

Spacelinq The First European Space Liner

TECH SPACE
Asia's star ever brighter in space

What Future for Chang'e-2

China setting up new rocket production base

China's Tiangong-1 To Be Launched By Modified Long March II-F Rocket

TECH SPACE
Space Debris No Threat To ISS

Astronauts head to ISS on spaceship Gagarin

Station Fires Engines To Avoid Orbital Debris

Successful First Mission For Aerospace Breakup Recorder

TECH SPACE
PSLV Launch On April 20

Russia Looks To Grab Half Of World Space Launch Market

Mitsubishi Electric's ST-2 Satellite Arrives In French Guiana

Jugnu Set To Go Into Space In June

TECH SPACE
A New Way To Find Planets

Telescope Ferrets Out Planet-Hunting Targets

White Dwarfs Could Be Fertile Ground For Other Earths

NASA Announces 2011 Carl Sagan Fellows

TECH SPACE
Researchers Find Replacement For Rare Material Indium Tin Oxide

Tiger Woods pro golf tour videogame tees off big

EPA, NRC checking for Japanese radiation

Inexpensive New Instruments Test Building Sealants Under Real-World Conditions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement