![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers West Lafayette IN (SPX) Dec 14, 2017
Our atmosphere is a better shield from meteoroids than researchers thought, according to a new paper published in Meteoritics and Planetary Science. When a meteor comes hurtling toward Earth, the high-pressure air in front of it seeps into its pores and cracks, pushing the body of the meteor apart and causing it to explode. "There's a big gradient between high-pressure air in front of the meteor and the vacuum of air behind it," said Jay Melosh, a professor of Earth, Atmospheric and Planetary Sciences at Purdue University and co-author of the paper. "If the air can move through the passages in the meteorite, it can easily get inside and blow off pieces." Researchers knew that meteoroids often blew up before they reach the Earth's surface, but they didn't know why. Melosh's team looked to the 2013 Chelyabinsk event, when a meteoroid exploded over Chelyabinsk, Russia, to explain the phenomenon. The explosion came as a surprise and brought in energy comparable to a small nuclear weapon. When it entered Earth's atmosphere, it created a bright fire ball. Minutes later, a shock wave blasted out nearby windows, injuring hundreds of people. The meteoroid weighed around 10,000 tons, but only about 2,000 tons of debris were recovered, which meant something happened in the upper atmosphere that caused it to disintegrate. To solve the puzzle, the researchers used a unique computer code that allows both solid material from the meteor body and air to exist in any part of the calculation. "I've been looking for something like this for a while," Melosh said. "Most of the computer codes we use for simulating impacts can tolerate multiple materials in a cell, but they average everything together. Different materials in the cell use their individual identity, which is not appropriate for this kind of calculation." This new code allowed the researchers to push air into the meteoroid and let it percolate, which lowered the strength of the meteoroid significantly, even if it had been moderately strong to begin with. While this mechanism may protect Earth's inhabitants from small meteoroids, large ones likely won't be bothered by it, he said. Iron meteoroids are much smaller and denser, and even relatively small ones tend to reach the surface.
![]() New Orleans LA (SPX) Dec 12, 2017 Researchers have identified an explosive new mechanism that breaks down meteors as they hurtle toward Earth. New simulations of falling meteors suggest air particles penetrate the space rocks' porous interiors as they careen through the atmosphere. These air particles create pockets of high pressure that ultimately lead the rock to explode from the inside, tens of kilometers above the Eart ... read more Related Links Purdue University Asteroid and Comet Mission News, Science and Technology
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |