. | . |
Research sheds new light on structure of gold nanoparticles in water by Staff Writers Jyvaskylan, Finland (SPX) Jan 26, 2016
Researchers at the University of Jyvaskyla, Finland, and Colorado State University, USA, have for the first time ever determined the dynamical behaviour of the ligand layer of a water-soluble gold nanocluster in solution. The breakthrough opens a way towards controllable strategies for the functionalisation of ligated nanoparticles for applications. The work at the University of Jyvaskyla was supported by the Academy of Finland. The research was published in Nature Communications on 21 January 2016. Nanometre-scale gold particles are intensively investigated for applications as catalysts, sensors, drug delivery devices and biological contrast agents and as components in photonics and molecular electronics. The smallest particles have metal cores of only 1-2 nm with a few tens to a couple of hundred gold atoms. Their metal cores are covered by a stabilising organic ligand layer. The molecular formulas and solid-state atomic structure of many of these compounds, called "clusters", have been resolved during the past few years. Still, it is a considerable challenge to understand their atomic-scale structure and dynamical behaviour in the solution phase. This is crucial information that can help researchers understand how nanoclusters interact with the environment. The researchers studied a previously identified molecularly precise nanocluster that has 102 gold atoms and 44 thiol ligands.. The solid-state structure of this cluster was resolved from single-crystal X-ray diffraction experiments in 2007. The ligand shell has a low symmetry and produces a large number of signals in conventional proton-NMR measurement. The researchers achieved a full assignment of all signals to specific thiol ligands by using a combination of correlated nuclear magnetic resonance (NMR) experiments, density functional theory computations and molecular dynamics simulations. The Finnish researchers at Jyvaskyla have previously used this specific cluster material, for instance, for structural studies of enteroviruses. (3) "Now that we know exactly which ligand produces which NMR signal, we can proceed with precise studies on how this nanocluster interacts with the chemical and biological environment in the water phase. "This gives unprecedented potential to understand and control the inorganic-organic interfaces that are relevant to hybrid inorganic-biological materials," says Academy Professor Hannu Hakkinen from the Nanoscience Center at the University of Jyvaskyla. Hakkinen coordinated the work of the Finnish-US team. The researchers involved in the work are Kirsi Salorinne, Sami Malola, Xi Chen and Hannu Hakkinen from the University of Jyvaskyla, and O. Andrea Wong, Christopher D. Rithner and Christopher J. Ackerson from Colorado State University. The computational work was done at the CSC - the Finnish IT Centre for Science.
Related Links Academy of Finland Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |