. 24/7 Space News .
CAR TECH
Research hints at double the driving range for electric vehicles
by Staff Writers
Richland WA (SPX) Mar 28, 2018

Researchers at PNNL developed a novel electrolyte for vehicle batteries that successfully creates a protective layer around electrodes - so they won't corrode - achieving significantly increased charge/discharge cycles.

When it comes to the special sauce of batteries, researchers at the Department of Energy's Pacific Northwest National Laboratory have discovered it's all about the salt concentration. By getting the right amount of salt, right where they want it, they've demonstrated a small lithium-metal battery can re-charge about seven times more than batteries with conventional electrolytes.

A battery's electrolyte solution shuttles charged atoms between electrodes to generate electricity. Finding an electrolyte solution that doesn't corrode the electrodes in a lithium-metal battery is a challenge but the PNNL approach, published online in Advanced Materials, successfully creates a protective layer around the electrodes and achieves significantly increased charge/discharge cycles.

Conventional electrolytes used in lithium-ion batteries, which power household electronics like computers and cell phones, are not suitable for lithium-metal batteries.

Lithium-metal batteries that replace a graphite electrode with a lithium electrode are the 'holy grail' of energy storage systems because lithium has a greater storage capacity and, therefore, a lithium-metal battery has double or triple the storage capacity. That extra power enables electric vehicles to drive more than two times longer between charges.

Adding more lithium-based salt to the liquid electrolyte mix creates a more stable interface between the electrolyte and the electrodes which, in turn, affects the life of the battery.

But that high concentration of salt comes with distinct downsides - including the high cost of lithium salt. The high concentration also increases viscosity and lowers conductivity of the ions through the electrolyte.

"We were trying to preserve the advantage of the high concentration of salt, but offset the disadvantages," said Ji-Guang "Jason" Zhang, a senior battery researcher at PNNL. "By combining a fluorine-based solvent to dilute the high concentration electrolyte, our team was able to significantly lower the total lithium salt concentration yet keep its benefits."

In this process, they were able to localize the high concentrations of lithium-based salt into "clusters" which are able to still form protective barriers on the electrode and prevent the growth of dendrites - microscopic, pin-like fibers - that cause rechargeable batteries to short circuit and limit their life span.

PNNL's patent-pending electrolyte was tested in PNNL's Advanced Battery Facility on an experimental battery cell similar in size to a watch battery. It was able to retain 80 percent of its initial charge after 700 cycles of discharging and recharging. A battery using a standard electrolyte can only maintain its charge for about 100 cycles.

Researchers will test this localized high concentration electrolyte on 'pouch' batteries developed at the lab, which are the size and power of a cell phone battery, to see how it performs at that scale. They say the concept of using this novel fluorine-based diluent to manipulate salt concentration also works well for sodium-metal batteries and other metal batteries.

This research is part of the Battery500 Consortium led by PNNL which aims to develop smaller, lighter, and less expensive batteries that nearly triple the specific energy found in batteries that power today's electric cars. Specific energy measures the amount of energy packed into a battery based on its weight.

Research Report: High-voltage lithium-metal batteries enabled by localized high concentration electrolytes


Related Links
Pacific Northwest National Laboratory
Car Technology at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CAR TECH
Pedestrian's death raises concerns over driverless cars
Paris (AFP) March 21, 2018
Self-driving cars were once the fixtures of futuristic cartoons and sci-fi films. Now, as they start to hit the road in the real world, thorny questions are mushrooming over their safety, and around the legal and ethical challenges they pose. Some of the issues at stake have become even more pressing since the first ever fatal self-driving car crash involving a pedestrian occurred at the weekend in the United States. Here are some of the concerns: - Which laws apply? - The UN Conve ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CAR TECH
Airbus delivers new life support system for the ISS

China to become top patent filer within three years: UN

A Frommer's guide to the future of interplanetary travel

NASA science heading to space ranges from the upper atmosphere to microbes

CAR TECH
Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

Air Force Chief of Staff: US 'On Track' to Replace Russian RD-180 Rocket Engine

Air Force awards launch contracts to SpaceX and ULA

CAR TECH
Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

360 Video: Tour a Mars Robot Test Lab

Next NASA Mars Rover Reaches Key Manufacturing Milestone

CAR TECH
China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

China to launch Long March-5B rocket in 2019

CAR TECH
Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

CAR TECH
Researchers use 3-D printing to create metallic glass alloys

Diamond powers first continuous room-temperature solid-state maser

Predicting the Lifespan of Materials in Space

NASA Marshall advances 3-D printed rocket engine nozzle technology

CAR TECH
Team discovers that wind moves microinvertebrates across desert

Yale's Expres Instrument ready to find the next Earth Analog

NASA's Kepler Spacecraft Nearing the End as Fuel Runs Low

Study sheds light on the genetic origins of the two sexes

CAR TECH
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.