![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Thuwal, Saudi Arabia (SPX) Jun 04, 2019
Harmful algal blooms in the Red Sea could be detected from satellite images using a method developed at KAUST. This remote sensing technique may eventually lead to a real-time monitoring system to help maintain the vital economic and ecological resources of the Red Sea. Monitoring harmful blooms using traditional in-situ methods is not only costly and labor intensive but often requires collaboration across borders. Remote sensing methods based on satellite data are a cost-effective approach that also offers the possibility of continuous monitoring and straightforward observation of the spatial and temporal extent of the bloom. However, appropriate analysis techniques are needed to reveal the algal blooms in satellite data. "So far, no satellite algorithms have been developed to monitor harmful algal blooms in the Red Sea region," says Ibrahim Hoteit's Ph.D. student Rajadurai A. Gokul. Together with colleagues at KAUST, as well as in Yemen and the UK, he extended existing methods to enable imagery from NASA's MODIS-Aqua satellite to be used to detect harmful algal blooms in the Red Sea. The team used satellite images of several algal blooms as training data to adjust their analysis model. They then validated the model by using it to analyze data collected during other algal blooms. The model successfully detected the algal blooms in the validation data, and predictions of their spatial extent and the chlorophyll A concentration matched observations made in the field. A significant challenge for the team was to develop an atmospheric-correction algorithm to cope with the frequent dust storms and aerosols over the Red Sea that come from the surrounding deserts. With this correction, they were able to retrieve more accurate ocean-color data and reflectance measurements at different wavelengths, which were used to detect algal blooms and determine which species were involved. The team is now using this approach to analyze historical satellite data to reconstruct and study previous algal blooms in order to understand their seasonality and annual variability. Further work will be needed to enable the model to detect algal species that weren't included in this research. "Our results suggest real potential for developing a real-time remote sensing algorithm to detect harmful algal bloom events in the Red Sea and issue timely alerts for emergency management," says Gokul. With further refinement, this will serve as a valuable resource in efforts to sustainably manage the Red Sea coastal zone and its role in the regional economy through aquaculture, fisheries and tourism.
![]() ![]() First ICESat-2 Global Data Released: Ice, Forests and More Greenbelt MD (SPX) May 30, 2019 More than a trillion new measurements of Earth's height - blanketing everything from glaciers in Greenland, to mangrove forests in Florida, to sea ice surrounding Antarctica - are now available to the public. With millions more observations added each day, data from NASA's Ice, Cloud and land Elevation Satellite-2 is providing a precise global portrait of elevation and will allow scientists to track even the slightest changes in the planet's polar regions. "The data from ICESat-2 are really blowin ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |