![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Fort Collins CO (SPX) Dec 28, 2018
Every month or two, a massive pulse of clouds, rainfall and wind moves eastward around the Earth near the equator, providing the tropics their famous thunderstorms. This band of recurring weather, first described by scientists in 1971, is called the Madden-Julian Oscillation. It has profound effects on weather in distant places, including the United States. Atmospheric scientists have long studied how the Madden-Julian Oscillation modulates extreme weather events across the globe, from hurricanes to floods to droughts. As human activities cause the Earth's temperature to increase, reliable, well-studied weather patterns like the Madden-Julian Oscillation will change too, say researchers at Colorado State University. Eric Maloney, professor in the Department of Atmospheric Science, has led a new study published in Nature Climate Change that attributes future changes in the behavior of the Madden-Julian Oscillation to anthropogenic global warming. Maloney and co-authors used data from six existing climate models to synthesize current views of such changes projected for the years 2080-2100. Their analysis reveals that while the Madden-Julian Oscillation's precipitation variations are likely to increase in intensity under a warmer climate, wind variations are likely to increase at a slower rate, or even decrease. That's in contrast to the conventional wisdom of a warming climate producing a more intense Madden-Julian Oscillation, and thus an across-the-board increase in extreme weather. "In just looking at precipitation changes, the Madden-Julian Oscillation is supposed to increase in strength in a future climate," Maloney said. "But one of the interesting things from our study is that we don't think this can be generalized to wind as well." Atmospheric science relies on weather patterns like the Madden-Julian Oscillation to inform weather prediction in other areas of Earth. For example, atmospheric rivers, which are plumes of high atmospheric water vapor that can cause severe flooding on the U.S. west coast, are strongly modulated by certain phases of the Madden-Julian Oscillation. According to Maloney's work, the Madden-Julian Oscillation's impact on remote areas may gradually decrease. Degradation in the oscillation's wind signal may thus diminish meteorologists' ability to predict extreme weather events. In particular, preferential warming of the upper troposphere in a future, warmer climate is expected to reduce the strength of the Madden-Julian Oscillation circulation. Maloney and colleagues hope to continue studying the Madden-Julian Oscillation using a broader set of climate models to be used in the next Intergovernmental Panel on Climate Change assessment.
![]() ![]() Researchers rise to challenge of predicting hail, tornadoes three weeks in advance Fort Collins CO (SPX) Dec 03, 2018 People living in Kansas, Nebraska and other states in the Plains are no strangers to tornadoes and hail storms - among the most costly and dangerous severe weather threats in the United States. Meteorologists and computer models do a good job forecasting severe thunderstorm activity up to a week in advance. Scientists can also read long-term, seasonal signals of severe weather months in advance.But there's a middle ground - a prediction lead time of about 2 to 5 weeks - that's sorely lacking in cu ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |