. 24/7 Space News .
CHIP TECH
Reducing conducting thin film surface roughness for electronics
by Staff Writers
Washington DC (SPX) Mar 09, 2017


Sequence of snapshots from a computer simulation of electric-field-driven morphological evolution of a copper thin film, demonstrating current-induced smooth surface. Image courtesy Du and Maroudas.

Surface roughness reduction is a really big deal when it comes to fundamental surface physics and while fabricating electronic and optical devices. As transistor dimensions within integrated circuits continue to shrink, smooth metallic lines are required to interconnect these devices. If the surfaces of these tiny metal lines aren't smooth enough, it substantially reduces their ability to conduct electrical and thermal energy - decreasing functionality.

A group of engineers at the University of Massachusetts Amherst are now reporting an advance this week in Applied Physics Letters, from AIP Publishing, in the form of modeling results that establish electrical surface treatment of conducting thin films as a physical processing method for reducing surface roughness.

"We've been thinking hard about this roughness problem for many years, since showing that electric currents can be used to inhibit surface cracking," said Dimitrios Maroudas, co-author and a professor in the Department of Chemical Engineering. "So as soon as we developed the computational tools to attack the full film roughness problem, we got to work."

The group's work focused on using a copper film on a silicon nitride layer to quantify the model parameters for their simulations and make comparisons with available experimental findings, which they were able to reproduce.

"Surface electromigration is the key physical concept involved," Maroudas explained. "It's the directed transport of atoms on the metal surface due to the so-called electron wind force, which expresses the transfer of momentum from the electrons of the metal moving under the action of an electric field to the atoms (ions) - biasing atomic migration."

Think of it as akin to the diffusion of ink in flowing water. "Electromigration's role in the transport of surface atoms is analogous to that of convection due to flow on the transport of ink within the water," Maroudas said. "The combined effects of a well-controlled applied electric field and rough surface geometry drive the atoms on the metal surface to move from the hills of the rough surface morphology to the neighboring valleys, which eventually smooth away the rough surfaces."

This work is significant, particularly within the microelectronics realm, because it establishes the electrical treatment of metallic (conducting) films as a viable physical processing strategy for reducing their surface roughness.

"Our approach is qualitatively different than traditional mechanical polishing or ion-beam irradiation techniques," said Lin Du, co-author and a doctoral student working with Maroudas. "It directly influences the driven diffusion of surface atoms precisely, which affects surface atomic motion and enables a smooth surface all the way down to the atomic level."

The required electric field action can be conveniently controlled macroscopically: simply choose a direction, adjust the voltage, and flip a switch "on."

"While studying the phenomenon, we discovered that a sufficiently strong electric field can bring the metallic surface to an atomically smooth state," Du said. "The required electric field strength depends largely on the field direction and surface material properties of the metallic film - such as film texture and surface diffusional anisotropy, because in surfaces of crystalline materials diffusion is faster along certain preferred directions."

A true irony here is that "electromigration is best known for its damaging effects within metallic interconnects - underlying crucial materials reliability problems in many generations of microelectronics," Maroudas said.

As far as applications, since this work establishes the principles to create smoother conducting material surfaces, "it can be used for fabricating and processing nanoscale-thick metallic components within electronic and optical devices, which require atomic-scale smoothness," Maroudas said. "The ability to reduce the surface roughness of metallic components, such as interconnects within integrated circuits, will significantly improve their performance as well as durability and reliability."

What's the next step for the engineers? "We're currently exploring how the effectiveness of the method depends on the metallic film texture (or surface crystallographic orientation), the film's wetting of the substrate, and the electric field direction with respect to certain surface crystallographic directions," Maroudas said.

The group's immediate goal is "to optimize the electrical treatment technique, and to identify the conditions for minimizing the required electric field strength, as well as the cost of applying this technique," he added. "Our next natural step should be a partnership with an experimental laboratory with the proper expertise to carry out tests that will help us move from proof of concept to an enabling technology."

"Current-induced surface roughness reduction in conducting thin films," is authored by Lin Du and Dimitrios Maroudas. The article will appear in the journal Applied Physics Letters March 7, 2017 (DOI: 10.1063/1.4977024).

CHIP TECH
Chinese tech giant eyes global market with custom chip
Beijing (AFP) Feb 28, 2017
Chinese technology giant Xiaomi on Tuesday unveiled an in-house processor, setting its sights on a top-tier global market long dominated by American companies. With the launch of its Surge S1 chipset, Xiaomi joins a rarified group of smartphone manufacturers with self-designed processors - the only others are Apple, Samsung and Chinese telecom company Huawei. "The ability to create its ... read more

Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Orion spacecraft achieves key safety milestone

The NASA Imager Dentists Use Daily

Marshall shakes, packs, ships and tracks NASA payloads

NASA and SpaceX gives ASU a competitive edge in technological innovation

CHIP TECH
SpaceX says it will fly civilians to the moon next year

Moon tourists risk rough ride, experts say

Flight Hardware for NASA's Space Launch System on Its Way to Cape

Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

CHIP TECH
NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

Science checkout continues for ExoMars orbiter

NASA Explores Opportunity for Smaller Experiments to 'Hitch a Ride' to Mars

CHIP TECH
Thinking Big: China Hopes to Conduct 2nd Mission to Mars by 2030

China to Conduct Test Flight of CZ-8 Carrier Rocket by 2018

China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

CHIP TECH
OneWeb, Intelsat merge to advance satellite internet

GomSpace to supply satellites for Sky and Space Global constellation

Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

CHIP TECH
Coffee-ring effect leads to crystallization control

3-D printing with plants

Researchers remotely control sequence in which 2-D sheets fold into 3-D structures

Scientists demonstrate improved particle warning to protect astronauts

CHIP TECH
Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

The missing link in how planets form

Volcanic hydrogen spurs chances of finding exoplanet life

CHIP TECH
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.