Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
Record quantum entanglement of multiple dimensions
by Staff Writers
Barcelona, Spain (SPX) Mar 31, 2014


File image.

The states in which elementary particles, such as photons, can be found have properties which are beyond common sense. Superpositions are produced, such as the possibility of being in two places at once, which defies intuition.

In addition, when two particles are entangled a connection is generated: measuring the state of one (whether they are in one place or another, or spinning one way or another, for example) affects the state of the other particle instantly, no matter how far away from each other they are.

Scientists have spent years combining both properties to construct networks of entangled particles in a state of superposition. This in turn allows constructing quantum computers capable of operating at unimaginable speeds, encrypting information with total security and conducting experiments in quantum mechanics which would be impossible to carry out otherwise.

Until now, in order to increase the "computing" capacity of these particle systems, scientists have mainly turned to increasing the number of entangled particles, each of them in a two-dimensional state of superposition: a qubit (the quantum equivalent to an information bit, but with values which can be 1, 0 or an overlap of both values). Using this method, scientists managed to entangle up to 14 particles, an authentic multitude given its experimental difficulty.

The research team was directed by Anton Zeilinger and Mario Krenn from the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

It included the participation of Marcus Huber, researcher from the Group of Quantum Information and Quantum Phenomena from the UAB Department of Physics, as well as visiting researcher at the Institute of Photonic Sciences (ICFO). The team has advanced one more step towards improving entangled quantum systems.

In an article published this week in the journal Proceedings (PNAS), scientists described how they managed to achieve a quantum entanglement with a minimum of 103 dimensions with only two particles.

"We have two Schrodinger cats which could be alive, dead, or in 101 other states simultaneously", Huber jokes, "plus, they are entangled in such a way that what happens to one immediately affects the other". The results implies a record in quantum entanglements of multiple dimensions with two particles, established until now at 11 dimensions.

Instead of entangling many particles with a qubit of information each, scientists generated one single pair of entangled photons in which each could be in more than one hundred states, or in any of the superpositions of theses states; something much easier than entangling many particles. These highly complex states correspond to different modes in which photons may find themselves in, with a distribution of their characteristic phase, angular momentum and intensity for each mode.

"This high dimension quantum entanglement offers great potential for quantum information applications. In cryptography, for example, our method would allow us to maintain the security of the information in realistic situations, with noise and interference. In addition, the discovery could facilitate the experimental development of quantum computers, since this would be an easier way of obtaining high dimensions of entanglement with few particles", explains UAB researcher Marcus Huber.

Now that the results demonstrate that obtaining high dimension entanglements is accessible, scientists conclude in the article that the next step will be to search how they can experimentally control these hundreds of spatial modes of the photons in order to conduct quantum computer operations.

.


Related Links
Universitat Autonoma de Barcelona
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Hunt for an unidentified electron object
Cambridge, UK (SPX) Mar 25, 2014
Researchers have developed a new mathematical framework capable of describing motions in superfluids - low temperature fluids that exhibit classical as well as quantum behavior. The framework was used to lift the veil of mystery surrounding strange objects in superfluid helium (detected ten years ago at Brown University). The study, conducted by an international collaboration of researcher ... read more


TIME AND SPACE
A Wet Moon

Unique camera from NASA's moon missions sold at auction

Expeditions to the Moon: beware of meteorites

ASU camera creates stunning mosaic of moon's polar region

TIME AND SPACE
Mars yard ready for Red Planet rover

Mars One building simulated colony to vet potential colonists

Cleaner NASA Rover Sees Its Shadow in Martian Spring

Mars-mimicking chamber explores habitability of other planets

TIME AND SPACE
NASA Marks Major Milestone for Spaceport of the Future

The NASA Z-2 Spacesuit Design Vote

NASA Seeks Collaborative Partnerships With Commercial Space

You've got mail: Clinton-to-space laptop up for auction

TIME AND SPACE
Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

China expects to launch cargo ship into space around 2016

TIME AND SPACE
Soyuz Docking Delayed Till Thursday as Station Crew Adjusts Schedule

Technical hitch delays US-Russia crew's ISS docking

US, Russian astronauts take new trajectory to dock the ISS

Software glitch most probable cause of Soyuz TMA-12 taking two day approach

TIME AND SPACE
Arianespace's seventh Soyuz mission from French Guiana is readied for liftoff next week

NASA Seeks Suborbital Flight Proposals

Arianespace Launches ASTRA 5B and Amazonas 4A

SpaceX Launch to the ISS Reset for March 30

TIME AND SPACE
Lick's Automated Planet Finder: First robotic telescope for planet hunters

Space Sunflower May Help Snap Pictures of Planets

NRL Researchers Detect Water Around a Hot Jupiter

UK joins the planet hunt with Europe's PLATO mission

TIME AND SPACE
MIT engineers design 'living materials'

Unavoidable disorder used to build nanolaser

Recovering valuable substances from wastewater

LockMart Opens Advanced Materials and Thermal Sciences Center In Palo Alto




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.