. | . |
Real-time tracking shows how batteries degrade by Staff Writers London, UK (SPX) Dec 22, 2015
How disposable Lithium batteries degrade during normal use has been tracked in real-time by a UCL-led team using sophisticated 3D imaging, giving a new way to non-invasively monitor performance loss and guide the development of more effective commercial battery designs. The team recently used the same technique to show how rechargeable Lithium-ion batteries fail when they are exposed to extreme levels of heat, but this is the first time the extent of day-to-day damage of disposable Lithium batteries has been shown. The study follows calls from investigators in August 2015 for a safety review of all lithium battery-powered equipment on planes after a fire on board a grounded Boeing 787 Dreamliner at Heathrow Airport in 2013. The fire was caused by the plane's disposable Lithium battery-powered emergency locator transmitter which sends out a radar signal to locate missing aircraft. The system is designed to work indefinitely until the aircraft is found but the results show the batteries may not be as resilient as they seem. The study by UCL, Lund University, The European Synchrotron (ESRF), University of Manchester, Harwell Oxford, Oregon State University and the National Physical Laboratory, published in Advanced Science, shows the internal structural damage caused to batteries working under normal conditions in real-time. Using cutting edge X-ray imaging techniques at ESRF, the team tracked different types of wear and tear which cause performance loss and linked this wear to design features of the commercial battery. First author, UCL PhD student Donal Finegan (UCL Chemical Engineering), said: "On the outside, the batteries look like they are doing their job normally but inside we saw the structure was undergoing great change. "Electrical activity was high in some areas of the cell, whereas it was low in others; layers of electrode material separated and cracked. All of these changes in structure affect the flow of electricity and reduce the performance of the cell." Real-time 3D images of active commercial Li/MnO2 disposable batteries were captured using X-ray computed tomography (CT) and advanced digital volume correlation software. The images formed cross-section time-lapse videos showing the damage occurring on the electrodes inside the battery in real-time. Corresponding author, Dr Paul Shearing (UCL Chemical Engineering), said: "Lithium disposable batteries are used for mission-critical systems where recharging is impractical, so understanding the safety and reliability of them is important, particularly given recent high-profile cases where batteries on aircraft have failed. "We gained valuable insights that apply to a variety of commercial batteries using this system, showing an effective, non-invasive way for industry to monitor performance and improvements in commercial battery design." Donal Finegan, added: "We effectively mapped the activity and strain on the material inside the battery which will help manufacturers predict how a particular battery will perform during operation and over time. We see this is a valuable tool for optimising the material used in commercial batteries, which will improve their resilience."
Related Links University College London Powering The World in the 21st Century at Energy-Daily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |