Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Rapid adaptation is purple sea urchins' weapon against ocean acidification
by Staff Writers
Santa Barbara CA (SPX) Jun 14, 2013


This is UCSB researcher Morgan Kelly. In her hands is a red urchin, close relative of the purple urchin, and one of several marine species being studied in the Hofmann lab for their response to ocean acidification. The other species include coral, algae, and the California mussel. Credit: UCSB.

In the race against climate change and ocean acidification, some sea urchins may still have a few tricks up their spiny sleeves, suggesting that adaptation will likely play a large role for the sea creatures as the carbon content of the ocean increases.

"What we want to know is, given that this is a process that happens over time, can marine animals adapt? Could evolution come to the rescue?" said postdoctoral researcher Morgan Kelly, from UC Santa Barbara's Department of Ecology, Evolution and Marine Biology. She is a co-author of the paper "Natural variation, and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus." The paper was published in the latest edition of the journal Global Change Biology.

Easily identified by their spherical symmetry and prickly barbs, sea urchins are found on the sea floor all over the world. They are considered a keystone species, meaning their population has an important impact on the rest of the undersea ecosystem. Too many of them and their habitat becomes barren and other algae-eating species disappear; too few and their predators - including sea mammals, seabirds, and fish - lose an important food source.

Due to rising carbon dioxide in the Earth's atmosphere, the oceans of the future are projected to absorb more carbon dioxide, leading to acidification of the water. The change in the ocean chemistry is expected to negatively affect the way urchins and other calcifying creatures create and maintain their shells and exoskeletons.

"It gives them osteoporosis," said Kelly. Increased water acidity would cause the levels of calcium carbonate - which the sea urchins require - to decrease. This, in turn, would result in smaller animals, thinner shells and perhaps shorter spines for the urchins.

To observe the potential effects of future increased levels of carbon dioxide in ocean water, the researchers bred generations of purple sea urchins in conditions mimicking projected environment of the ocean in near the end of the century.

"We exposed them to 1,100 parts per million of carbon dioxide," Kelly said. Current CO2 levels top off at about 400 parts per million and the levels are expected to increase globally to 700 parts per million by the end of the century. In the California region, however, CO2 levels in the ocean naturally fluctuate because of cold water upwelling, a phenomenon that also brings more acidic waters.

The animals were taken from two locations off the California coast - a northern site, which experiences greater upwelling, and a southern site that experiences shorter, less frequent bouts of upwelling. Males from one site were crossed with females from the other site. The larvae were spawned and observed in the projected conditions of the future oceans.

While the larvae reared under the future carbon dioxide levels were, on average, smaller, the researchers also noted a wide variation in size, indicating that some of these larvae - the ones that remained the same size as they would have under today's conditions - had inherited a tolerance for higher CO2 levels.

Size, said Kelly, is an important trait. It's tied to feeding rate and the risk of being eaten by other creatures. The animals that can withstand higher CO2 levels in the ocean will leave more offspring than their weaker counterparts.

This natural selection, coupled with the finding that variation in size under more acidic conditions is heritable, points to the rapid evolution of the purple urchin.

"This is what allows us to predict that this species will evolve increased tolerance - as CO2 rises, urchins that have greater tolerance will have a better chance of survival, and they will pass on their greater tolerance to their offspring," said Kelly.

The findings suggest that the effects of ocean acidification may not have as deleterious an impact on sea urchin size or population growth rates as previously thought. Good news for the keystone species, and good news for the creatures that eat them. The results also suggest that adaptation is a major factor in the response of ecologically important species to climate change.

"We don't expect evolution to completely erase the effects of ocean acidification, but we do expect evolution to mitigate these effects. And the more heritable variation there is, the greater the power of evolution to mitigate the effects of climate change," said Kelly.

Research for this study was also conducted by postdoctoral researcher Jacqueline Padilla-Gamino, and Gretchen Hofmann, professor in the Department of Ecology, Evolution and Marine Biology. Similar CO2 studies are being conducted on other marine species in the Hofmann lab, including red urchin, coral, algae, and the California mussel.

.


Related Links
University of California - Santa Barbara
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Researchers discover a new way fish camouflage themselves in the ocean
Austin TX (SPX) Jun 13, 2013
Fish can hide in the open ocean by manipulating how light reflects off their skin, according to researchers at The University of Texas at Austin. The discovery could someday lead to the development of new camouflage materials for use in the ocean, and it overturns 40 years of conventional wisdom about fish camouflage. The researchers found that lookdown fish camouflage themselves through a ... read more


WATER WORLD
LADEE Arrives at Wallops for Moon Mission

NASA's GRAIL Mission Solves Mystery of Moon's Surface Gravity

Moon dust samples missing for 40 years found in Calif. warehouse

Unusual minerals in moon craters may have been delivered from space

WATER WORLD
Mars Water-Ice Clouds Are Key to Odd Thermal Rhythm

Marks on Martian Dunes May Reveal Tracks of Dry-Ice Sleds

UH Astrobiologists Find Martian Clay Contains Chemical Implicated in the Origin of Life

Mars Rover Opportunity Trekking Toward More Layers

WATER WORLD
The Body Electric: Researchers Move Closer to Low-Cost, Implantable Electronics

TED conference sets stage for a week of bright ideas

NASA's Orion Spacecraft Proves Sound Under Pressure

Expert slams Congress over ban on U.S.-China space cooperation

WATER WORLD
China astronauts enter space module

China to send second woman into space: officials

Tiangong-1 ready for docking and entry

Shenzhou-10 mission to teach students in orbit

WATER WORLD
Europe's space truck docks with ISS

Russian cargo supply craft separates from International Space Station

Russian Space Freighter to Depart From Orbital Station

Star Canadian spaceman Chris Hadfield retiring

WATER WORLD
Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

Europe launches record cargo for space station

New chief urges Ariane 5 modification for big satellites

WATER WORLD
Sunny Super-Earth?

Kepler Stars and Planets are Bigger than Previously Thought

Astronomers gear up to discover Earth-like planets

Stars Don't Obliterate Their Planets (Very Often)

WATER WORLD
NSBRI Industry Forum Launches Grant Opportunity To Drive Spaceflight Product Development

Filmmaking magic with polymers

Chilean, U.S. firms join effort to expand e-waste recycling

Space Debris - One Solution




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement