. 24/7 Space News .
EARTH OBSERVATION
RapidScat Celebrates One-Year Anniversary
by Staff Writers
Pasadena CA (JPL) Nov 09, 2015


RapidScat measures winds that are just above the ocean surface. The instrument is a Ku-band scatterometer that transmits pulses of microwave energy toward Earth. The surface of Earth reflects this signal, and RapidScat measures the strength of the pulse that comes back. Stronger return signals from the ocean indicate larger waves. The return signal also carries information about wind direction.

Where do predictions for regional weather patterns come from? For one source, look to the ocean. About 70 percent of Earth's surface is covered in oceans, and changes in ocean winds are good predictors of many weather phenomena on small and large scales.

NASA's ISS-RapidScat instrument, which last month celebrated its one-year anniversary, helps make these ocean wind measurements to enhance weather forecasting and understanding of climate. The instrument was first activated on the International Space Station on Oct. 1, 2014.

"Especially with the recent hurricane season, our data have been appearing on weather websites around the world," said Glen Havens, project manager for the mission, based at NASA's Jet Propulsion Laboratory, Pasadena, California.

In its first year in action, the instrument has collected data on many severe storms, including typhoons and tropical cyclones. RapidScat has proven valuable for tracking the Southern Hemisphere's hurricane season and the Northern Hemisphere's winter storm season.

Most recently, RapidScat played a role in tracking Hurricane Patricia, which loomed over Mexico in October. Patricia was the strongest hurricane ever recorded in the Western Hemisphere, with maximum winds of 200 mph (320 kilometers per hour). When it first made landfall on the Pacific coast of Mexico on Oct. 23, it was a destructive Category 5 storm.

Worldwide, many meteorological agencies include RapidScat data in the ensemble of data sets used to create forecasts. The agencies include the U.S. Navy, the National Oceanographic and Atmospheric Administration (NOAA), and the European Organization for the Exploitation of Meteorological Satellites.

High wind warnings, to which RapidScat data contribute, are especially important for anyone involved in shipping and sailing. Wind information from RapidScat can also be useful for enthusiasts of water sports.

"People who go sailing, and sometimes even surfers, look at RapidScat data to find where big waves are," said Stacey Boland, project systems engineer for RapidScat at JPL.

RapidScat measures winds that are just above the ocean surface. The instrument is a Ku-band scatterometer that transmits pulses of microwave energy toward Earth. The surface of Earth reflects this signal, and RapidScat measures the strength of the pulse that comes back. Stronger return signals from the ocean indicate larger waves. The return signal also carries information about wind direction.

Most scatterometers are launched in sun-synchronous orbits, such that each time they fly over the same place on Earth, it's at the same local time. But because RapidScat is mounted on the space station, which is not in a sun-synchronous orbit, it sees different places at different local times. The instrument samples all local times of day over the course of about two months, allowing scientists to learn more about how winds vary over the course of a day for a given location.

Another unique aspect of the mission is that the instrument was constructed using hardware built in the 1990s. Engineers adapted hardware that was originally built to test QuikScat, which was launched in 1999 into a sun-synchronous orbit. They added a smaller reflector antenna and a new interface to the repurposed instrument to make it work on the space station.

Repurposing the QuikScat test hardware significantly reduced the cost of the mission compared to what it would have been if the instrument had been built from scratch. It also allowed for a relatively quick turnaround time for building the instrument: A mere two years from approval to launch.

The RapidScat team addressed challenges that come with using older technology, such as the radar receiver electronics. But the "plucky radar" system, as Havens calls it, continues collecting science data and sending it back to Earth.

"We immediately started getting high-quality data after the instrument began operating," said Howard Eisen of JPL, who served as project manager at the beginning of the mission.

The instrument resides on the Columbus module on the space station, and will stay there until at least early 2017.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
RapidScat at NASA
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
NASA to fly, sail north to study plankton-climate change connection
Hampton VA (SPX) Nov 09, 2015
NASA begins a five-year study this month of the annual cycle of phytoplankton and the impact that small airborne particles emitted from the ocean have on the climate-sensitive North Atlantic. The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) will collect data during ship and aircraft measurement campaigns and combine that data with continuous satellite and ocean sensor readi ... read more


EARTH OBSERVATION
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

EARTH OBSERVATION
Dust devils detected by seismometer could guide Mars mission

Amnesia Event Slows Down Opportunity Robotic Arm Work

Swiss Camera Leaves for Mars

NASA mission reveals speed of solar wind stripping Martian atmosphere

EARTH OBSERVATION
Orion Service Module Stacking Assembly Secured For Flight

Global partnerships in orbit support economic growth on and off the Earth

Magic plant discovery could lead to growing food in space

NASA Armstrong Hosts Convergent Aeronautics Solutions Showcase

EARTH OBSERVATION
China's self-developed Mars probe to be on show

Could Sino-U.S. cooperation bring the Martian home?

China's scientific satellites to enter uncharted territory

Declaration approved to promote Asia Pacific space cooperation

EARTH OBSERVATION
US astronauts dodge ammonia on risky spacewalk

UK astronaut dreams of heavenly Christmas pudding

NASA drops Boeing from race for $3.5 billion cargo contract

Space Station offers valuable lessons about life support systems

EARTH OBSERVATION
Rocket launch from Hawaii carrying UH payload experiences anomaly

Commercial Spaceflight Gets A Boost With Latest Congressional Moves

The 10th Arianespace mission of 2015 is "go" for its Ariane 5 liftoff next week

USAF releases first Booster Propulsion Technology Maturation BAA Award

EARTH OBSERVATION
Distant world's weather is mixed bag of hot dust and molten rain

Disk gaps don't always signal planets

Finding New Worlds with a Play of Light and Shadow

Did Jupiter Expel A Rival Gas Giant

EARTH OBSERVATION
Researchers create transplantation model for 3-D printed constructs

New ORNL catalyst features unsurpassed selectivity

Cyclic healing removes defects in metals while maintaining strength

Microscopy unveils lithium-rich transition metal oxides









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.