. 24/7 Space News .
CHIP TECH
Quantum race accelerates development of silicon quantum chip
by Staff Writers
Delft, Netherlands (SPX) Feb 05, 2018

The quantum computer of the future will be able to carry out computations far beyond the capacity of today's computers. Researchers from left to right: Nodar Samkharadze, Lieven Vandersypen and Guoji Zheng.

The worldwide race to create more, better and reliable quantum processors is progressing fast, as a team of TU Delft scientists led by Professor Vandersypen has realised yet again.

In a neck-and-neck race with their competitors, they showed that quantum information of an electron spin can be transported to a photon, in a silicon quantum chip. This is important in order to connect quantum bits across the chip and allowing to scale up to large numbers of qubits. Their work was published in the journal Science.

The quantum computer of the future will be able to carry out computations far beyond the capacity of today's computers. Quantum superpositions and entanglement of quantum bits (qubits) make it possible to perform parallel computations. Scientists and companies worldwide are engaged in creating increasingly better quantum chips with more and more quantum bits. QuTech in Delft is working hard on several types of quantum chips.

The core of the quantum chips is made of silicon. "This is a material that we are very familiar with," explains Professor Lieven Vandersypen of QuTech and the Kavli Institute of Nanoscience Delft, "Silicon is widely used in transistors and so can be found in all electronic devices."

But silicon is also a very promising material for quantum technology. PhD candidate Guoji Zheng: "We can use electrical fields to capture single electrons in silicon for use as quantum bits (qubits). This is an attractive material as it ensures the information in the qubit can be stored for a long time."

Large systems
Making useful computations requires large numbers of qubits and it is this upscaling to large numbers that is providing a challenge worldwide. "To use a lot of qubits at the same time, they need to be connected to each other; there needs to be good communication", explains researcher Nodar Samkharadze.

At present the electrons that are captured as qubits in silicon can only make direct contact with their immediate neighbours. Nodar: "That makes it tricky to scale up to large numbers of qubits."

Neck-and-neck race
Other quantum systems use photons for long-distance interactions. For years, this was also a major goal for silicon. Only in recent years have various scientists made progress on this.

The Delft scientists have now shown that a single electron spin and a single photon can be coupled on a silicon chip. This coupling makes it possible in principle to transfer quantum information between a spin and a photon. Guoji Zheng: "This is important to connect distant quantum bits on a silicon chip, thereby paving the way to upscaling quantum bits on silicon chips."

On to the next step
Vandersypen is proud of his team: "My team achieved this result in a relatively short time and under great pressure from worldwide competition." It is a true Delft breakthrough: "The substrate is made in Delft, the chip created in the Delft cleanrooms, and all measurements carried out at QuTech," adds Nodar Samkharadze. The scientists are now working hard on the next steps. Vandersypen: "The goal now is to transfer the information via a photon from on electron spin to another."


Related Links
Delft University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
TU Wien develops new semiconductor processing technology
Vienna, Austria (SPX) Feb 05, 2018
Extremely fine porous structures with tiny holes - resembling a kind of sponge at nano level - can be generated in semiconductors. This opens up new possibilities for the realization of tiny sensors or unusual optical and electronic components. There have already been experiments in this area with porous structures made from silicon. Now, researchers at TU Wien have succeeded in developing a method for the controlled manufacture of porous silicon carbide. Silicon carbide has significant advantages ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Amazon opens plant-filled "The Spheres" buildings

NASA-JAXA Joint Statement on Space Exploration

Space station spacewalk postponed until mid-February

Microbes may help astronauts transform human waste into food

CHIP TECH
Falcon Heavy rocket ready for fueling, static fire test

SpaceX CEO Sets Date for First Falcon Heavy Rocket Launch

Rocket Lab successfully circularizes orbit with new Electron kick stage

Ariane 5 delivers SES-14 and Al Yah 3 to orbit

CHIP TECH
NASA tests power system to support manned missions to Mars

European-Russian space mission steps up the search for life on Mars

Opportunity prepares software update as Sol 5000 approaches

NASA's Next Mars Lander Spreads its Solar Wings

CHIP TECH
China's first successful lunar laser ranging accomplished

Yang Liwei looks back at China's first manned space mission

Space agency to pick those with the right stuff

China to select astronauts for its space station

CHIP TECH
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

CHIP TECH
Quantum control

Virtual reality goes magnetic

A frequency-doubling unit for transportable lasers

Updates on recovery attempts for NASA IMAGE mission

CHIP TECH
First Light for Planet Hunter ExTrA at La Silla

A new 'atmospheric disequilibrium' could help detect life on other planets

Johns Hopkins scientist proposes new limit on the definition of a planet

NASA Poised to Topple a Planet-Finding Barrier

CHIP TECH
Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.