|
. | . |
|
by Staff Writers Vienna, Austria (SPX) Apr 17, 2015
Temperature is a very useful physical quantity. It allows us to make a simple statistical statement about the energy of particles swirling around on complicated paths without having to know the specific details of the system. Scientists from the Vienna University of Technology together with colleagues from Heidelberg University have now investigated, how quantum particles reach such a state where statistical statements are possible. The result is surprising: a cloud of atoms can have several temperatures at once. This is an important step towards a deeper understanding of large quantum systems and their exotic properties. The results have now been published in the journal "Science".
Statistics Helps where Things get Complicated This statistical view (which was developed by the Viennese physicist Ludwig Boltzmann) has proved to be extremely successful and describes many different physical systems, from pots of boiling water to phase transitions in liquid crystals in LCD-displays. However, in spite of huge efforts, open questions have remained, especially with regard to quantum systems. How the well-known laws of statistical physics emerge from many small quantum parts of a system remains one of the big open questions in physics.
Hot and Cold at the Same Time The experiment showed remarkable results: When the external conditions on the chip were changed abruptly, the quantum gas could take on different temperatures at once. It can be hot and cold at the same time. The number of temperatures depends on how exactly the scientists manipulate the gas. "With our microchip we can control the complex quantum systems very well and measure their behaviour", says Tim Langen, leading author of the paper published in "Science". There had already been theoretical calculations predicting this effect, but it has never been possible to observe it and to produce it in a controlled environment. The experiment helps scientists to understand the fundamental laws of quantum physics and their relationship with the statistical laws of thermodynamics. This is relevant for many different quantum systems, maybe even for technological applications. Finally, the results shed some light on the way our classical macroscopic world emerges from the strange world of tiny quantum objects. T. Langen et al., Experimental observation of a generalized Gibbs ensemble, arXiv:1411.7185
Related Links Vienna University of Technology Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |