. 24/7 Space News .
CHIP TECH
Quantifying how much quantum information can be eavesdropped
by Staff Writers
Washington DC (SPX) Jan 29, 2019

illustration only

Summary The most basic type of quantum information processing is quantum entanglement. In a new study published in EPJ B, Zhaonan Zhang from Shaanxi Normal University, Xi'an, China, and colleagues have provided a much finer characterisation of the distributions of entanglement in multi-qubit systems than previously available. These findings can be used in quantum cryptography to estimate the quantity of information an eavesdropper can capture regarding the secret encryption key.

Encrypted communication is achieved by sending quantum information in basic units called quantum bits, or qubits. The most basic type of quantum information processing is quantum entanglement. However, this process remains poorly understood. Better controlling quantum entanglement could help to improve quantum teleportation, the development of quantum computers, and quantum cryptography.

Now, a team of Chinese physicists have focused on finding ways to enhance the reliability of quantum secret sharing. In a new study published in EPJ B, Zhaonan Zhang from Shaanxi Normal University, Xi'an, China, and colleagues provide a much finer characterisation of the distributions of entanglement in multi-qubit systems than previously available.

In the context of quantum cryptography, these findings can be used to estimate the quantity of information an eavesdropper can capture regarding the secret encryption key.

Physicists working on new ways of securing quantum encrypted messages are exploiting the fact that, at the quantum scale, a given qubit can only be entangled with one other qubit; this unique trait is referred to as monogamy of entanglement.

In practical terms, the quantum rules for entanglement are explained by considering three qubits, called A, B and C, belonging to Alice, Bob and Charlie, respectively. If Alice and Bob share quantum information via a two-qubit system, called AB, they cannot share any entangled states with Charlie's qubit C.

However, there is also another kind of entanglement, called polygamy, in which qubits display partial entanglement with several qubits at the same time.

In this study, the authors develop a series of equations explaining the conditions for monogamy and polygamy, which are much better characterised than previous work. Specifically, they first investigate three-qubit systems under certain restrictions and then derive a general result for multi-qubit systems.

Z. Zhang, Y. Luo, and Y. Li (2019), Tighter monogamy and polygamy relations in multiqubit systems, European Physical Journal D 73: 13, DOI: 10.1140/epjd/e2018-90563-2


Related Links
Springer
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Breakthrough reported in fabricating nanochips
New York NY (SPX) Jan 25, 2019
An international team of researchers has reported a breakthrough in fabricating atom-thin processors - a discovery that could have far-reaching impacts on nanoscale chip production and in labs across the globe where scientists are exploring 2D materials for ever-smaller and -faster semiconductors. The team, headed by New York University Tandon School of Engineering Professor of Chemical and Biomolecular Engineering Elisa Riedo, outlined the research results in the latest issue of Nature Electronic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Duration of UAE Astronaut's Mission on Board ISS Reduced to 8 Days

NASA Announces Updated Crew Assignment for Boeing Flight Test

China is growing crops on the far side of the moon

Beans to be next vegetable on astronauts' menu by 2021

CHIP TECH
Japan launches Epsilon-4 Rocket with 7 satellites

United Launch Alliance Successfully Launches NROL-71 in Support of National Security

Air Force and its mission partners successfully launch NROL71

Russia ready to design new super heavy rocket says Rogozin

CHIP TECH
Dust storm activity appears to pick up south of Opportunity

ExoMars software passes ESA Mars Yard driving test

Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

CHIP TECH
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

CHIP TECH
mu Space unveils plan to bid for space exploration projects

Airbus wins DARPA contract to develop smallsat bus for Blackjack program

A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

How much do European citizens know about space?

CHIP TECH
'The new oil': Dublin strikes it rich as Europe's data hub

Materials that open in the heat of the moment

What atoms do when liquids and gases meet

New technology uses lasers to transmit audible messages to specific people

CHIP TECH
Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

CHIP TECH
Juno's Latest Flyby of Jupiter Captures Two Massive Storms

Outer Solar System Orbits Not Likely Caused by "Planet Nine"

Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.