. 24/7 Space News .
Penn State Researchers Look Beyond The Birth Of The Universe

While the general idea of another universe existing prior to the Big Bang has been proposed before, this is the first mathematical description that systematically establishes its existence and deduces properties of space-time geometry in that universe.
by Staff Writers
Uniontown PA (SPX) May 17, 2006
According to Einstein's general theory of relativity, the Big Bang represents The Beginning, the grand event at which not only matter but space-time itself was born. While classical theories offer no clues about existence before that moment, a research team at Penn State has used quantum gravitational calculations to find threads that lead to an earlier time.

"General relativity can be used to describe the universe back to a point at which matter becomes so dense that its equations don't hold up," says Abhay Ashtekar, Holder of the Eberly Family Chair in Physics and Director of the Institute for Gravitational Physics and Geometry at Penn State. "Beyond that point, we needed to apply quantum tools that were not available to Einstein." By combining quantum physics with general relativity, Ashtekar and two of his post-doctoral researchers, Tomasz Pawlowski and Parmpreet Singh, were able to develop a model that traces through the Big Bang to a shrinking universe that exhibits physics similar to ours.

In research reported in the current issue of Physical Review Letters, the team shows that, prior to the Big Bang, there was a contracting universe with space-time geometry that otherwise is similar to that of our current expanding universe. As gravitational forces pulled this previous universe inward, it reached a point at which the quantum properties of space-time cause gravity to become repulsive, rather than attractive. "Using quantum modifications of Einstein's cosmological equations, we have shown that in place of a classical Big Bang there is in fact a quantum Bounce," says Ashtekar. "We were so surprised by the finding that there is another classical, pre-Big Bang universe that we repeated the simulations with different parameter values over several months, but we found that the Big Bounce scenario is robust."

While the general idea of another universe existing prior to the Big Bang has been proposed before, this is the first mathematical description that systematically establishes its existence and deduces properties of space-time geometry in that universe.

The research team used loop quantum gravity, a leading approach to the problem of the unification of general relativity with quantum physics, which also was pioneered at the Penn State Institute of Gravitational Physics and Geometry. In this theory, space-time geometry itself has a discrete 'atomic' structure and the familiar continuum is only an approximation. The fabric of space is literally woven by one-dimensional quantum threads. Near the Big-Bang, this fabric is violently torn and the quantum nature of geometry becomes important. It makes gravity strongly repulsive, giving rise to the Big Bounce.

"Our initial work assumes a homogenous model of our universe," says Ashtekar. "However, it has given us confidence in the underlying ideas of loop quantum gravity. We will continue to refine the model to better portray the universe as we know it and to better understand the features of quantum gravity."

The research was sponsored by the National Science Foundation, the Alexander von Humboldt Foundation, and the Penn State Eberly College of Science.

Related Links
Penn State



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Astronomers Create Prize-Winning Black Hole Site
Baltimore MD (SPX) May 17, 2006
A team of astronomers has created an entire Web site that explores the mysterious phenomena known as black holes.







  • International Workshop Eyes Cooperative Solar System Exploration
  • Japan space sneakers are ultra-high heels
  • NASA Testing Heat Shield Samples For CEV
  • NASA Awards Boeing S-3B Viking Modification Contract

  • Mars Drilling Tests Will Seek Knowledge And Resources
  • Opportunity Within Sight Of Victoria
  • Spirit Takes A Winter Break From Travels But Remains Busy
  • Opportunity Encounters Rolling Ripples

  • Arianespace Inks More Launch Contracts
  • Ariane 5 Mission Takes Next Assembly Step
  • Sea Launch Contracts To Launch EchoStar XI
  • Saab Ericsson Space To Equip More Ariane 5 Launchers

  • NASA Looks At Hurricane Cloud Tops For Windy Clues
  • Raytheon Tests Advanced Space-Based Weather Sensor
  • Tibet Provides Passage For Chemicals To Reach The Stratosphere
  • ESA To Host Atmospheric Science Conference

  • New Model Could Explain Eccentric Triton Orbit
  • New Horizons Taking Exploration To Edge Of Sol
  • Xena Poses A Bright Mystery
  • Tenth Planet Only Slightly Bigger Than Pluto

  • Stardust Analysis Update
  • EADS Astrium To Build Gaia Satellite
  • VLT Spies Twin Supernovae
  • Light So Fast It Actually Goes Backwards

  • India Hoping To To Unveil Space Prowess Before NASA
  • China To Launch Satellites For Lunar Surveying
  • NASA Announces Lunar Lander Analog Competition Agreement
  • Scientists Working To Help Astronauts To Breath Moon Dust

  • Sat-Nav Directs British Ambulance Off-Course
  • ESA Satellite Workshop Forecasts Navigation Advances
  • Spirent Federal GPS Simulation System Selected by Naval Air Systems Command
  • Iridium Will Supply Satellite Links For ARGO Tracker

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement