Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Optimizing electronic correlations for superconductivity
by Staff Writers
Houston TX (SPX) Nov 25, 2013


Rice University physicist Qimiao Si, left, and Rong Yu, an associate professor at Renmin University, Beijing, led a new study to characterize electron correlations in high-temperature superconducting iron compounds. (Credit: Jeff Fitlow/Rice University)

The decadeslong effort to create practical superconductors moved a step forward with the discovery at Rice University that two distinctly different iron-based compounds share common mechanisms for moving electrons.

Samples from two classes of iron-based superconductors, pnictides and chalcogenides, employ similar coupling between electrons in their superconducting state, said Rice physicist Qimiao Si. Understanding that mechanism may help researchers find even better superconductors, he said.

The findings appear online today in a new Nature Communications paper by Si and colleagues in China and at Florida State University, George Mason University and the Los Alamos National Laboratory.

The pursuit of superconductivity -- the ability of electrons to travel through a material with no resistance and producing no heat -- has been a great challenge. But the rewards will be worth it, Si said, because superconductors will bring about revolutions not only in power generation and distribution, but also transportation, computing, medical imaging and more.

A superconductor has to be made of the right materials with electrons in just the right state. That depends on the temperature and how the materials' atoms - primarily the electrons - coordinate their activities. Experimental and theoretical analysis of the iron compounds helped the researchers define the delicate interplay of energies involved in the Mott transition (from metal to nonmetal), the superconducting transition temperature and the electron spin responsible for magnetism, which plays a key role in the finding, Si said.

"Historically, magnetism has been considered detrimental to superconductivity," he said. "We think of magnets sticking to the fridge and superconductors as living in entirely different worlds. And, in fact, the conventional theory of solids treats these two phenomena completely differently.

"That reinforced the notion that the two decouple. But in iron pnictides and chalcogenides, as well as some other materials, magnetism often comes hand in hand with superconductivity. That led us to ask the question: In which regime of this electron coupling could one find optimized superconductivity?"

The work by Si and his team showed how the interactions between electron spins in the iron-based compounds drive superconductivity. This interaction is the strongest when the electronic system is close to the Mott transition, which Si described as the point at which electrons teeter on the edge of free movement or being stuck in place.

"Ironically, this regime of electron correlation produces poor electrical conduction above the superconducting transition temperature, so the optimized superconductivity arises out of a bad metal," said Rong Yu, a co-author of the paper who was a postdoctoral fellow at Rice until this summer, when he became an associate professor at Renmin University in Beijing.

Part of the success of the work is to explain how superconductivity peaks of the two doped iron compounds have comparable transition temperatures, as has been observed experimentally.

"The chalcogenides, in many regards, are different from the pnictides but have a superconductive transition temperature just as high. That was a major surprise in the field," Si said.

Superconductors have to be kept cold. The compounds' superconducting properties activate at their transition temperatures, the points at which materials go from one phase to another - say, from a gas to a liquid or a liquid to a solid, as in steam to water to ice. Liquid helium-cooled superconductors have transition temperatures of about 4 degrees Kelvin. (That's -452 degrees Fahrenheit.) And what scientists consider "high-temperature" superconductors operate in conditions that would still frost a wampa.

While the long-term goal is to create superconductors that operate at room temperature, a good immediate target is 77 kelvins (-321 F), the boiling point of liquid nitrogen. Copper-based superconductors known as cuprates have achieved this goal, Si said, and the iron-based compounds he studies are closing in. "The record (for iron-based materials) is 56 K, but there's a sense in the community that we're not that far away," he said.

High temperature superconductivity was discovered in 2008 in the pnictides, irons doped with elements from Group 15 of the periodic table, including arsenic and phosphorus. The chalcogenides of interest to Si are even more recent creations. "This particular chalcogenide (a compound of potassium, iron and selenium) has only existed since late 2010," he said. "When it came out, we were surprised to see it has such a high transition temperature (a little above 30 K), given all the other electronic properties of this class of materials, which are very different from the pnictides."

More than two years ago, Si and his colleagues discovered that the "parent" members of the pnictides and chalcogenides occurred just on either side of the Mott transition. Their finding provided the understanding of the bad metallic behavior in both families of materials above their superconducting transition temperatures.

That work gave Si a head start to address the nature of superconductivity in both compounds. "In the present work, we conclude that the superconductive pairing of electrons is strongest near the Mott transition," he said.

The implications are great, Si said. Compared with the cuprates, the number of possible iron-based compounds is huge. Si and his colleagues think defining the underlying superconducting mechanism for irons will help researchers make materials that approach 77 K and, they hope, exceed it. That's important to industry, as liquid nitrogen drawn from air is far more abundant (and cheaper) than liquid helium.

Co-authors of the paper are Pallab Goswami, a postdoctoral associate at the National High Magnetic Field Laboratory at Florida State University; Predrag Nikolic, an assistant professor at George Mason University; and Jian-Xin Zhu, a technical staff member at Los Alamos National Laboratory. Goswami, Nikolic and Yu are former postdoctoral researchers in Si's group at Rice, and Zhu is a former visiting scientist in Si's group. Si is the Harry C. and Olga K. Wiess Professor of Physics and Astronomy at Rice. The National Science Foundation, the Robert A. Welch Foundation, the National Science Foundation of China, the Office of Naval Research, the National Institute of Standards and Technology and the Department of Energy supported the research. Read the abstract here

.


Related Links
Rice University
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
A Superconductor-Surrogate Earns Its Stripes
Berkeley CA (SPX) Nov 20, 2013
Understanding superconductivity - whereby certain materials can conduct electricity without any loss of energy - has proved to be one of the most persistent problems in modern physics. Scientists have struggled for decades to develop a cohesive theory of superconductivity, largely spurred by the game-changing prospect of creating a superconductor that works at room temperature, but it has proved ... read more


ENERGY TECH
NASA Spacecraft Begins Collecting Lunar Atmosphere Data

Big Boost for China's Moon Lander

Rediscovered Apollo data gives first measure of how fast Moon dust piles up

NASA's GRAIL Mission Puts a New Face on the Moon

ENERGY TECH
Winter Means Less Power for Solar Panels

Unusual greenhouse gases may have raised ancient Martian temperature

How Habitable Is Mars? A New View of the Viking Experiments

Rover Team Working to Diagnose Electrical Issue

ENERGY TECH
NASA Advances Effort to Launch Astronauts Again from US Soil to Space Station

Israeli experts launches space studies course for teachers

Success of 'New Space' era hinges on public's interest

NASA Issues 2014 Call for Advanced Technology Concepts

ENERGY TECH
China shows off moon rover model before space launch

China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

ENERGY TECH
Russians take Olympic torch on historic spacewalk

Russia launches Sochi Olympic torch into space

Spaceflight Joins with NanoRacks to Deploy Satellites from the ISS

Crew Completes Preparations for Soyuz Move

ENERGY TECH
Spaceflight Deploys Planet Labs' Dove 3 Spacecraft from the Dnepr

Arianespace orders ten new Vega launchers from ELV

NASA Commercial Crew Partner SpaceX Achieves Milestone in Safety Review

ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

ENERGY TECH
NASA Kepler Results Usher in a New Era of Astronomy

Astronomers answer key question: How common are habitable planets?

One in five Sun-like stars may have Earth-like planets

Mystery World Baffles Astronomers

ENERGY TECH
Overcoming Brittleness: New Insights into Bulk Metallic Glass

SlipChip Counts Molecules with Chemistry and a Cell Phone

NASA Instrument Determines Hazards of Deep-Space Radiation

$3.3 billion Canadian mining project scrapped




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement