. | . |
Observed latitudinal variations in erosion as a function of glacier dynamics by Staff Writers Vancouver, Canada (SPX) Oct 08, 2015
Climate change is causing more than just warmer oceans and erratic weather. According to scientists, it also has the capacity to alter the shape of the planet. In a five-year study published in Nature, lead author Michele Koppes, assistant professor in the Department of Geography at the University of British Columbia, compared glaciers in Patagonia and in the Antarctic Peninsula. She and her team found that glaciers in warmer Patagonia moved faster and caused more erosion than those in Antarctica, as warmer temperatures and melting ice helped lubricate the bed of the glaciers. "We found that glaciers erode 100 to 1,000 times faster in Patagonia than they do in Antarctica," said Koppes. "Antarctica is warming up, and as it moves to temperatures above 0 degrees Celsius, the glaciers are all going to start moving faster. We are already seeing that the ice sheets are starting to move faster and should become more erosive, digging deeper valleys and shedding more sediment into the oceans." The repercussions of this erosion add to the already complex effects of climate change in the polar regions. Faster moving glaciers deposit more sediment in downstream basins and on the continental shelves, potentially impacting fisheries, dams and access to clean freshwater in mountain communities. "The polar continental margins in particular are hotspots of biodiversity," notes Koppes. "If you're pumping out that much more sediment into the water, you're changing the aquatic habitat." The Canadian Arctic, one of the most rapidly warming regions of the world, will feel these effects acutely. With more than four degrees Celsius of warming over the last 50 years, the glaciers are on the brink of a major shift that will see them flowing up to 100 times faster if the climate shifts above zero degrees Celsius. The findings by Koppes and coauthors also settle a scientific debate about when glaciers have the greatest impact on shaping landscapes and creating relief, suggesting that they do the most erosive work near the end of each cycle of glaciation, rather than at the peak of ice cover. The last major glacial cycles in the Vancouver region ended approximately 12,500 years ago. The study, Observed latitudinal variations in erosion as a function of glacier dynamics, appears in Nature
Related Links University of British Columbia Beyond the Ice Age
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |