![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Norman OK (SPX) Dec 13, 2019
A University of Oklahoma research group is reporting the detection of extragalactic planet-mass objects in a second and third galaxy beyond the Milky Way after the first detection in 2018. With the existing observational resources, it is impossible to directly detect planet-mass objects beyond the Milky Way and to measure its rogue planetary population. Members of the group include Xinyu Dai, associate professor in the Homer L. Dodge Department of Physics and Astronomy, OU College of Arts and Sciences, with Ph.D. student Saloni Bhatiani and former postdoctoral researcher Eduardo Guerras. "The detection of planet-mass objects, either free-floating planets or primordial black holes, are extremely valuable for modeling of star/planet formation or early universe," said Dai. "Even without decomposing the two populations, our limit on the primordial black hole population are already a few orders of magnitude below previous limits in this mass range." The research group has identified a novel technique that uses quasar microlensing to probe the planet population within distant extragalactic systems. They have been able to constrain the fraction of these planet-mass objects with respect to the galactic halo by studying their microlensing signatures in the spectrum of the lensed images of distant bright Active Galactic Nuclei. The group surmised these unbound objects to be either free-floating planets or primordial black holes. Free-floating planets were ejected or scattered during stellar/planetary formation. Primordial black holes are formed in the early phase of the universe due to quantum fluctuation. The results are of significant as they confirm that planet-mass objects are indeed universal in galaxies. Moreover, the first-ever constraints at the planet-mass range within the intracluster region of a galaxy cluster are presented here. The constraints on the primordial mass black holes in the planet mass range are a few orders of magnitude below previous limits. "We are very excited about the detections in two news systems," said Bhatiani. "We can consistently extract signals from planet mass objects in distant galaxies. This opens a new window in astrophysics." The observational data used for this work comes from decade-long observations conducted by NASA's Chandra X-ray observatory. The observational evidence for these planet-mass objects was derived from the microlensing signals that appear as shifts in the X-ray emission line of the quasar. These observational measurements were matched against microlensing simulations that were computed at the OU Supercomputing Center for Education and Research. Comparison of the research group's models with the observed microlensing rates allowed them to constrain the fraction of these planet-mass objects in the two extragalactic systems about 0.01% of the total mass. This work is a follow-up of the previous research work done by Dai and Guerras that provided the first indirect evidence for the existence of free-floating planets outside the Milky Way. The two systems are Q J0158?4325 and SDSS J1004+4112. To be able to confirm the existence of planet-mass objects in a galaxy cluster when the universe was half of its current age is quite extraordinary. The group's analysis confirms the existence of these planet-scale objects ranging from Jupiter to Moon mass at extragalactic distances and provides the most stringent constraints at this mass range. These results are in agreement with the current constraints for the unbound planet-mass objects within the Milky Way Galaxy. The results are published in November 2019 issue of the Astrophysical Journal (DOI: 10.3847/1538-4357/ab46ac).
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |