. | . |
Novel thermal phases of topological quantum matter in the lab by Staff Writers Madrid, Spain (SPX) Apr 18, 2018
For the first time in the lab, a group of researchers from Universidad Complutense de Madrid, IBM, ETH Zurich, MIT and Harvard University have observed topological phases of matter of quantum states under the action of temperature or certain types of experimental imperfections. The experiment has been carried out in a platform of superconducting qubits at IBM, also known as quantum simulator. Quantum simulators were first conjectured by the Nobel Prize in Physics, Richard Feynman, in 1982 since ordinary classical computers that we use nowadays were proved to be inefficient to simulate systems of interacting quantum particles. These new simulators are genuinely quantum and can be controlled very precisely (for instance, systems of cold atoms trapped with lasers, or superconducting materials coupled to microwave radiation). They replicate other quantum systems that are harder to manipulate and whose physical properties remain very much unknown. In an article published in the journal Quantum Information of the Nature Publishing Group, these researchers explain how using a quantum simulator with superconducting qubits at IBM, they were able to replicate materials known as topological insulators at finite temperature, and measure for the first time their topological quantum phases. Topological phase of matter represent a very exciting and active field of research that is revolutionising our understanding of nature and material science. The study of these novel phases of matter has given rise to new materials such as topological insulators, which behave as regular insulators in the bulk and as metals at the boundaries. These boundary electronic currents have the spin (intrinsic magnetic moment) polarised, thus they are expected to play a very important role in spintronics, a novel alternative to conventional electronic technology.
Thermal topological phases The results found in this experiment with quantum simulators represent the first measurement of topological quantum phases with temperature, and advance the synthesis and control of topological matter using quantum technologies. Among other applications, the topological quantum matter could be used as hardware for future quantum computers due to its intrinsic robustness against errors. The experimental results presented in this work show how these topological quantum phases can also be robust against temperature effects.
Research Report: Observation of topological Uhlmann phases with superconducting qubits, O. Viyuela, A. Rivas, S. Gasparinetti, A. Wallraff, S. Filipp, M.A. Martin-Delgado, NPJ Quantum Information, Volume 4, Article number: 10 (2018). DOI:10.1038/s41534-017-0056-9
Polarization has strong impact on electrons, study shows Onna, Japan (SPX) Apr 17, 2018 The movement of thousands of negatively charged atomic particles - electrons - makes modern electronics tick. Yet, ubiquitous as electrons are, the particulars of their behavior continue to stump physicists. One phenomenon has proven especially puzzling: how electrons move under the influence of polarized electromagnetic waves. Polarization occurs when waves, such as electromagnetic or light waves, rotate. Electromagnetic fields called microwaves have a rotating electric field that turns clockwise ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |