. 24/7 Space News .
CHIP TECH
Novel insulators with conducting edges
by Staff Writers
Zurich, Switzerland (SPX) Jun 04, 2018

This is a schematic of a higher-order topological insulator in the shape of a nanowire, with conducting channels on its edges.

Topology examines the properties of objects and solids that are protected against perturbations and deformations. Materials known so far include topological insulators, which are crystals that insulate on the inside but conduct electrical current on their surface.

The conducting surfaces are topologically protected, which means that they cannot easily be brought into an insulating state.

Theoretical physicists at the University of Zurich have now predicted a new class of topological insulators that have conducting properties on the edges of crystals rather than on their surface.

The research team, made up of scientists from UZH, Princeton University, the Donostia International Physics Center and the Max Planck Institute of Microstructure Physics in Halle, dubbed the new material class "higher-order topological insulators".

The extraordinary robustness of the conducting edges makes them particularly interesting: The current of topological electrons cannot be stopped by disorder or impurities. If an imperfection gets in the way of the current, it simply flows around the impurity.

Like a highway for electrons
In addition, the crystal edges do not have to be specially prepared to conduct electrical current. If the crystal breaks, the new edges automatically also conduct current. "The most exciting aspect is that electricity can at least in theory be conducted without any dissipation," says Titus Neupert, professor at the Department of Physics at UZH.

"You could think of the crystal edges as a kind of highway for electrons. They can't simply make a U-turn." This property of dissipationless conductance, otherwise known from superconductors at low temperatures, is not shared with the previously known topological insulator crystals that have conducting surfaces, but is specific to the higher-order topological crystals.

Further theoretical and experimental research needed
The physicists' study still mostly relies on theoretical aspects. They have proposed tin telluride as the first compound to show these novel properties. "More material candidates have to be identified and probed in experiments," says Neupert.

The researchers hope that in the future nanowires made of higher-order topological insulators may be used as conducting paths in electric circuits. They could be combined with magnetic and superconducting materials and used for building quantum computers.

Frank Schindler, Ashley M. Cook, Maia G. Vergniory, Zhijun Wang, Stuart S. P. Parkin, B. Andrei Bernevig, Titus Neupert. Higher-order topological insulators. Science Advances, June 1st, 2018. DOI: 10.1126/sciadv.aat0346


Related Links
University of Zurich
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Toshiba completes $21 bn sale of chip unit
Tokyo (AFP) June 1, 2018
Embattled conglomerate Toshiba on Friday completed the $21 billion sale of its prized chip unit to an investment consortium, a move seen as crucial to keeping the Japanese firm afloat. The deal had been delayed while Chinese regulators examined whether it could violate anti-trust laws, but they finally granted approval in mid-May. "Toshiba hereby gives notice that the closing of the sale has been completed today as scheduled," the group said in a statement. It added that the deal was worth a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Putin, Abe speak to ISS astronauts from Kremlin

NASA awards $43M to US Small Businesses for Tech Research

Yoyager's Golden Record may paint humans in a confusing way

NASA Administrator Statement on Space Policy Directive-2

CHIP TECH
Watch live: SpaceX to launch SES-12 communications satellite

Russia to Create Rocket Production Holding on Basis of Roscosmos

What really happened to that melted NASA Camera?

Aerojet Rocketdyne Thrusters Help Deliver Cygnus to International Space Station

CHIP TECH
Why we won't get to Mars without teamwork

Curiosity Mars rover back on drill duty

Scientists Shrink Chemistry Lab to Seek Evidence of Life on Mars

Opportunity Collects Panoramas for Site Awareness and Future Drive Planning

CHIP TECH
China's Queqiao satellite carries "large umbrella" into deep space

Russia May Help China Create International Cosmonauts Rehabilitation Center

Sunrise for China's commercial space industry?

Chinese rewrite record, live 370 days in self-contained moon lab

CHIP TECH
From ships to satellites: Scotland aims for the sky

Iridium Makes Maritime Industry History

Goonhilly lands 24m pounds investment enabling global expansion

Australian Space Agency Lost In Canberra

CHIP TECH
Zn-InsP6 complex can enhance excretion of radioactive strontium from the body

Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers

Study shows ceramics can deform like metals if sintered under an electric field

Japan to receive digital radar systems from Raytheon

CHIP TECH
Linguists gather in L.A. to ponder the Language of ET

Kepler Begins 18th Observing Campaign with a Focus On Star Clusters

Mars rocks may harbor signs of life from 4 billion years ago

Take a Virtual Trip to a Strange New World with NASA

CHIP TECH
SwRI scientists introduce cosmochemical model for Pluto formation

Jupiter: A New Perspective

OSL Optics to help unlock the secrets of Jupiter's Icy Moons

Study co-authored by UCLA scientists shows evidence of water vapor plumes on Jupiter moon









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.