|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Washington DC (SPX) Sep 16, 2015
In the Marvel Comics universe, Professor Xavier and the X-Men are only able to fend off their archrival Magneto, the magnetic mutant with the ability to control metals, once they truly understand the scope of the villain's powers. To better understand the behavior of the microbial world's Magnetos - the magnetically influenced water-dwellers known as magnetotactic bacteria - three researchers from Europe and Russia have developed a new tool that allows these unique microscopic species to be studied more easily, especially in their natural environment. The researchers describe their work in the journal Review of Scientific Instruments, from AIP Publishing. Magnetotactic bacteria can be found in both freshwater and marine environments. What makes them magnetic is that they produce chains of organelles (compartments located inside the bacterial cell wall) called magnetosomes that contain nanometer-size iron crystals. The earth's magnetic field puts a torque on the magnetosome chains, rotating the bacteria in which they reside. This causes the bacteria to swim in the direction of the applied external force. "In other words, magnetotactic bacteria act as self-propelled compass needles," said Pieter Smid, a geophysicist with Ludwig-Maximilians-Universitat in Munich, Germany and the University of Nottingham in the United Kingdom. "Their magnetic abilities help them find a chemically suitable habitat in which to thrive." Smid said that magnetotactic bacteria are important creatures to study because they can provide scientific insight into how our planet's sedimentary layers were formed. "When these microbes die in aqueous sediments, their magnetosomes are conserved in the rocks formed from that sediment," he explained. "The magnetic properties are permanently imparted to the rock which, in turn, serves as a record of changes in the earth's magnetic fields and provides us with a timeline for the rock's creation." Additionally, Smid said that magnetotactic bacteria may one day be used as indicators of impending environmental and climate change, or as microscopic transport systems for nanoparticles.
Making Study of Magnetotactic Bacteria More "Attractive" "In the past, two pairs of electromagnetic coils were wrapped around a microscope to control the swimming direction of the magnetotactic bacteria," Smid said. "These multicomponent systems required large power supplies, complex electromagnetic frameworks, much electronic circuitry and control software - not the kind of mechanism that's suitable for outside-the-lab experiments." Conventional magnets also produced magnetic fields that were difficult to control, with waves of varying intensities filling the microscope viewing area. Such variations, Smid said, often played havoc with measurements being performed on samples of magnetotactic bacteria. Smid and colleagues solved these problems by designing a simple mechanism using a single rotating permanent magnet. Their device resembles the inner workings of a watch, with the magnet positioned atop a concentric series of five gears turning in sync to create a strictly controlled and easily manipulated rotating magnetic field. "The permanent magnet in our mechanism moves along a circular trajectory while rotating around its dipole axis [the center point between the north and south poles of the magnet]," Smid said. "As the magnet turns, it generates a magnetic field of constant amplitude [intensity] and when we place this next to a microscope, it drives the magnetotactic bacteria on the scope to swim in a circular motion and keeps them in view." By measuring the radius of each circle the magnetotactic bacteria travel as the magnet rotates faster and faster, the researchers can accurately determine swimming speed. This is a key to better understanding how the bacteria move in a magnetic field and how those dynamics might be used in future applications. When the frequency of the magnetic field rotation increases to the point that the bacteria will no longer follow the generated field, they break out of their circular swimming pattern. "This specific frequency, known as the 'escape frequency,' can be used to calculate a bacterium's magnetic moment - the measure of its ability to align with a magnetic field," Smid explained.
Simple System, Many Advantages Next up for the researchers will be testing their new tool on different species of magnetotactic bacteria in different environments. They hope to begin answering questions such as how populations respond and adapt to a wide range of magnetic fields, and how the magnetic properties of these special microbes can best be put to use. The article, "Microscopic observation of magnetic bacteria in the magnetic field of a permanent rotating magnet," is authored by Pieter Smid, Valeriy Shcherbakov and Nikolai Petersen. It will be published in the journal Review of Scientific Instruments on September 15, 2015 (DOI: 10.1063/1.4929331).
Related Links American Institute of Physics Space Technology News - Applications and Research
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |